Spelling suggestions: "subject:"L'apprentissage een profondeur"" "subject:"L'apprentissage enn profondeur""
1 |
Forensic Source Camera Identification by Using Features in Machine Learning Approach / Identification d'appareils photos par apprentissageAlhussainy, Amel Tuama 01 December 2016 (has links)
L'identification d'appareils photos a récemment fait l'objet d'une grande attention en raison de son apport en terme sécurité et juridique. Établir l'origine d'un médias numériques, obtenus par un appareil d'imagerie est important à chaque fois que le contenu numériques est présente et utilise comme preuve devant un tribunal.L'identification d'appareils photos consiste à déterminer la marque, le modèle, ou le dispositif qui a été utilisé pour prendre une image.Notre première contribution pour l'identification du modèle d'appareil photo numérique est basée sur l'extraction de trois ensembles de caractéristiques puis l'utilisation d'apprentissage automatique. Ces caractéristiques sont la matrice de cooccurrences,des corrélations inter-canaux mesurant la trace laissée par l'interpolation CFA, et les probabilités conditionnelles calculées dans le domaine JPEG. Ces caractéristiques donnent des statistiques d'ordre élevées qui complètent et améliorent le taux d'identification. Les expériences prouvent la force de notre proposition, car la précision obtenue est supérieure à celle des méthodes basées sur la corrélation.La deuxième contribution est basée sur l'utilisation des CNNs. Contrairement aux méthodes traditionnelles, les CNNs apprennent simultanément les caractéristiques et la classification. Nous proposons d'ajouter une couche de pré-traitement (filtre passe-haut applique à l'image d’entrée) au CNN. Le CNN obtenu donne de très bonnes performances pour une faible complexité d'apprentissage. La méthode proposée donne des résultats équivalent à ceux obtenu par une approche en deux étapes (extraction de caractéristiques + SVM). Par ailleurs nous avons également examines les CNNs : AlexNet et GoogleNet. GoogleNet donne actuellement les meilleurs taux d'identification pour une complexité d'apprentissage plus grande / Source camera identification has recently received a wide attention due to its importantrole in security and legal issue. The problem of establishing the origin ofdigital media obtained through an imaging device is important whenever digitalcontent is presented and is used as evidence in the court. Source camera identification is the process of determining which camera device or model has been used to capture an image.Our first contribution for digital camera model identification is based on the extractionof three sets of features in a machine learning scheme. These featuresare the co-occurrences matrix, some features related to CFA interpolation arrangement,and conditional probability statistics computed in the JPEG domain.These features give high order statistics which supplement and enhance the identification rate. The experiments prove the strength of our proposition since it achieves higher accuracy than the correlation-based method.The second contribution is based on using the deep convolutional neural networks(CNNs). Unlike traditional methods, CNNs can automatically and simultaneouslyextract features and learn to classify during the learning process. A layer ofpreprocessing is added to the CNN model, and consists of a high pass filter which isapplied to the input image. The obtained CNN gives very good performance for avery small learning complexity. Experimental comparison with a classical two stepsmachine learning approach shows that the proposed method can achieve significantdetection performance. The well known object recognition CNN models, AlexNetand GoogleNet, are also examined.
|
2 |
Explorer et apprendre à partir de collections de textes multilingues à l'aide des modèles probabilistes latents et des réseaux profonds / Mining and learning from multilingual text collections using topic models and word embeddingsBalikas, Georgios 20 October 2017 (has links)
Le texte est l'une des sources d'informations les plus répandues et les plus persistantes. L'analyse de contenu du texte se réfère à des méthodes d'étude et de récupération d'informations à partir de documents. Aujourd'hui, avec une quantité de texte disponible en ligne toujours croissante l'analyse de contenu du texte revêt une grande importance parce qu' elle permet une variété d'applications. À cette fin, les méthodes d'apprentissage de la représentation sans supervision telles que les modèles thématiques et les word embeddings constituent des outils importants.L'objectif de cette dissertation est d'étudier et de relever des défis dans ce domaine.Dans la première partie de la thèse, nous nous concentrons sur les modèles thématiques et plus précisément sur la manière d'incorporer des informations antérieures sur la structure du texte à ces modèles.Les modèles de sujets sont basés sur le principe du sac-de-mots et, par conséquent, les mots sont échangeables. Bien que cette hypothèse profite les calculs des probabilités conditionnelles, cela entraîne une perte d'information.Pour éviter cette limitation, nous proposons deux mécanismes qui étendent les modèles de sujets en intégrant leur connaissance de la structure du texte. Nous supposons que les documents sont répartis dans des segments de texte cohérents. Le premier mécanisme attribue le même sujet aux mots d'un segment. La seconde, capitalise sur les propriétés de copulas, un outil principalement utilisé dans les domaines de l'économie et de la gestion des risques, qui sert à modéliser les distributions communes de densité de probabilité des variables aléatoires tout en n'accédant qu'à leurs marginaux.La deuxième partie de la thèse explore les modèles de sujets bilingues pour les collections comparables avec des alignements de documents explicites. En règle générale, une collection de documents pour ces modèles se présente sous la forme de paires de documents comparables. Les documents d'une paire sont écrits dans différentes langues et sont thématiquement similaires. À moins de traductions, les documents d'une paire sont semblables dans une certaine mesure seulement. Pendant ce temps, les modèles de sujets représentatifs supposent que les documents ont des distributions thématiques identiques, ce qui constitue une hypothèse forte et limitante. Pour le surmonter, nous proposons de nouveaux modèles thématiques bilingues qui intègrent la notion de similitude interlingue des documents qui constituent les paires dans leurs processus générateurs et d'inférence.La dernière partie de la thèse porte sur l'utilisation d'embeddings de mots et de réseaux de neurones pour trois applications d'exploration de texte. Tout d'abord, nous abordons la classification du document polylinguistique où nous soutenons que les traductions d'un document peuvent être utilisées pour enrichir sa représentation. À l'aide d'un codeur automatique pour obtenir ces représentations de documents robustes, nous démontrons des améliorations dans la tâche de classification de documents multi-classes. Deuxièmement, nous explorons la classification des tweets à plusieurs tâches en soutenant que, en formant conjointement des systèmes de classification utilisant des tâches corrélées, on peut améliorer la performance obtenue. À cette fin, nous montrons comment réaliser des performances de pointe sur une tâche de classification du sentiment en utilisant des réseaux neuronaux récurrents. La troisième application que nous explorons est la récupération d'informations entre langues. Compte tenu d'un document écrit dans une langue, la tâche consiste à récupérer les documents les plus similaires à partir d'un ensemble de documents écrits dans une autre langue. Dans cette ligne de recherche, nous montrons qu'en adaptant le problème du transport pour la tâche d'estimation des distances documentaires, on peut obtenir des améliorations importantes. / Text is one of the most pervasive and persistent sources of information. Content analysis of text in its broad sense refers to methods for studying and retrieving information from documents. Nowadays, with the ever increasing amounts of text becoming available online is several languages and different styles, content analysis of text is of tremendous importance as it enables a variety of applications. To this end, unsupervised representation learning methods such as topic models and word embeddings constitute prominent tools.The goal of this dissertation is to study and address challengingproblems in this area, focusing on both the design of novel text miningalgorithms and tools, as well as on studying how these tools can be applied to text collections written in a single or several languages.In the first part of the thesis we focus on topic models and more precisely on how to incorporate prior information of text structure to such models.Topic models are built on the premise of bag-of-words, and therefore words are exchangeable. While this assumption benefits the calculations of the conditional probabilities it results in loss of information.To overcome this limitation we propose two mechanisms that extend topic models by integrating knowledge of text structure to them. We assume that the documents are partitioned in thematically coherent text segments. The first mechanism assigns the same topic to the words of a segment. The second, capitalizes on the properties of copulas, a tool mainly used in the fields of economics and risk management that is used to model the joint probability density distributions of random variables while having access only to their marginals.The second part of the thesis explores bilingual topic models for comparable corpora with explicit document alignments. Typically, a document collection for such models is in the form of comparable document pairs. The documents of a pair are written in different languages and are thematically similar. Unless translations, the documents of a pair are similar to some extent only. Meanwhile, representative topic models assume that the documents have identical topic distributions, which is a strong and limiting assumption. To overcome it we propose novel bilingual topic models that incorporate the notion of cross-lingual similarity of the documents that constitute the pairs in their generative and inference processes. Calculating this cross-lingual document similarity is a task on itself, which we propose to address using cross-lingual word embeddings.The last part of the thesis concerns the use of word embeddings and neural networks for three text mining applications. First, we discuss polylingual document classification where we argue that translations of a document can be used to enrich its representation. Using an auto-encoder to obtain these robust document representations we demonstrate improvements in the task of multi-class document classification. Second, we explore multi-task sentiment classification of tweets arguing that by jointly training classification systems using correlated tasks can improve the obtained performance. To this end we show how can achieve state-of-the-art performance on a sentiment classification task using recurrent neural networks. The third application we explore is cross-lingual information retrieval. Given a document written in one language, the task consists in retrieving the most similar documents from a pool of documents written in another language. In this line of research, we show that by adapting the transportation problem for the task of estimating document distances one can achieve important improvements.
|
3 |
Calibrated uncertainty estimation for SLAMBansal, Dishank 04 1900 (has links)
La focus de cette thèse de maîtrise est l’analyse de l’étalonnage de l’incertitude pour la lo- calisation et la cartographie simultanées (SLAM) en utilisant des modèles de mesure basés sur les réseaux de neurones. SLAM sont un problème fondamental en robotique et en vision par ordinateur, avec de nombreuses applications allant des voitures autonomes aux réalités augmentées. Au cœur de SLAM, il s’agit d’estimer la pose (c’est-à-dire la position et l’orien- tation) d’un robot ou d’une caméra lorsqu’elle se déplace dans un environnement inconnu et de construire simultanément une carte de l’environnement environnant. Le SLAM visuel, qui utilise des images en entrée, est un cadre de SLAM couramment utilisé. Cependant, les méthodes traditionnelles de SLAM visuel sont basées sur des caractéristiques fabriquées à la main et peuvent être vulnérables à des défis tels que la mauvaise luminosité et l’occultation. L’apprentissage profond est devenu une approche plus évolutive et robuste, avec les réseaux de neurones convolutionnels (CNN) devenant le système de perception de facto en robotique.
Pour intégrer les méthodes basées sur les CNN aux systèmes de SLAM, il est nécessaire d’estimer l’incertitude ou le bruit dans les mesures de perception. L’apprentissage profond bayésien a fourni diverses méthodes pour estimer l’incertitude dans les réseaux de neurones, notamment les ensembles, la distribution sur les paramètres du réseau et l’ajout de têtes de prédiction pour les paramètres de distribution de la sortie. Cependant, il est également important de s’assurer que ces estimations d’incertitude sont bien étalonnées, c’est-à-dire qu’elles reflètent fidèlement l’erreur de prédiction.
Dans cette thèse de maîtrise, nous abordons ce défi en développant un système de SLAM qui intègre un réseau de neurones en tant que modèle de mesure et des estimations d’in- certitude étalonnées. Nous montrons que ce système fonctionne mieux que les approches qui utilisent la méthode traditionnelle d’estimation de l’incertitude, où les estimations de l’incertitude sont simplement considérées comme des hyperparamètres qui sont réglés ma- nuellement. Nos résultats démontrent l’importance de tenir compte de manière précise de l’incertitude dans le problème de SLAM, en particulier lors de l’utilisation d’un réseau de neur. / The focus of this Masters thesis is the analysis of uncertainty calibration for Simultaneous Localization and Mapping (SLAM) using neural network-based measurement models. SLAM is a fundamental problem in robotics and computer vision, with numerous applications rang- ing from self-driving cars to augmented reality. At its core, SLAM involves estimating the pose (i.e., position and orientation) of a robot or camera as it moves through an unknown environment and constructing a map of the surrounding environment simultaneously. Vi- sual SLAM, which uses images as input, is a commonly used SLAM framework. However, traditional Visual SLAM methods rely on handcrafted features and can be vulnerable to challenges such as poor lighting and occlusion. Deep learning has emerged as a more scal- able and robust approach, with Convolutional Neural Networks (CNNs) becoming the de facto perception system in robotics.
To integrate CNN-based methods with SLAM systems, it is necessary to estimate the uncertainty or noise in the perception measurements. Bayesian deep learning has provided various methods for estimating uncertainty in neural networks, including ensembles, distribu- tions over network parameters, and adding variance heads for direct uncertainty prediction. However, it is also essential to ensure that these uncertainty estimates are well-calibrated, i.e they accurately reflect the error in the prediction.
In this Master’s thesis, we address this challenge by developing a system for SLAM that incorporates a neural network as the measurement model and calibrated uncertainty esti- mates. We show that this system performs better than the approaches which uses traditional uncertainty estimation method, where uncertainty estimates are just considered hyperpa- rameters which are tuned manually. Our results demonstrate the importance of accurately accounting for uncertainty in the SLAM problem, particularly when using a neural network as the measurement model, in order to achieve reliable and robust localization and mapping.
|
4 |
Towards better understanding and improving optimization in recurrent neural networksKanuparthi, Bhargav 07 1900 (has links)
Recurrent neural networks (RNN) are known for their notorious exploding and vanishing gradient problem (EVGP). This problem becomes more evident in tasks where the information needed to correctly solve them exist over long time scales, because it prevents important gradient components from being back-propagated adequately over a large number of steps. The papers written in this work formalizes gradient propagation in parametric and semi-parametric RNNs to gain a better understanding towards the source of this problem. The first paper introduces a simple stochastic algorithm (h-detach) that is specific to LSTM optimization and targeted towards addressing the EVGP problem. Using this we show significant improvements over vanilla LSTM in terms of convergence speed, robustness to seed and learning rate, and generalization on various benchmark datasets. The next paper focuses on semi-parametric RNNs and self-attentive networks. Self-attention provides a way by which a system can dynamically access past states (stored in memory) which helps in mitigating vanishing of gradients. Although useful, it is difficult to scale as the size of the computational graph grows quadratically with the number of time steps involved. In the paper we describe a relevancy screening mechanism, inspired by the cognitive process of memory consolidation, that allows for a scalable use of sparse self-attention with recurrence while ensuring good gradient propagation. / Les réseaux de neurones récurrents (RNN) sont connus pour leur problème de gradient d'explosion et de disparition notoire (EVGP). Ce problème devient plus évident dans les tâches où les informations nécessaires pour les résoudre correctement existent sur de longues échelles de temps, car il empêche les composants de gradient importants de se propager correctement sur un grand nombre d'étapes. Les articles écrits dans ce travail formalise la propagation du gradient dans les RNN paramétriques et semi-paramétriques pour mieux comprendre la source de ce problème. Le premier article présente un algorithme stochastique simple (h-detach) spécifique à l'optimisation LSTM et visant à résoudre le problème EVGP. En utilisant cela, nous montrons des améliorations significatives par rapport au LSTM vanille en termes de vitesse de convergence, de robustesse au taux d'amorçage et d'apprentissage, et de généralisation sur divers ensembles de données de référence. Le prochain article se concentre sur les RNN semi-paramétriques et les réseaux auto-attentifs. L'auto-attention fournit un moyen par lequel un système peut accéder dynamiquement aux états passés (stockés en mémoire), ce qui aide à atténuer la disparition des gradients. Bien qu'utile, il est difficile à mettre à l'échelle car la taille du graphe de calcul augmente de manière quadratique avec le nombre de pas de temps impliqués. Dans l'article, nous décrivons un mécanisme de criblage de pertinence, inspiré par le processus cognitif de consolidation de la mémoire, qui permet une utilisation évolutive de l'auto-attention clairsemée avec récurrence tout en assurant une bonne propagation du gradient.
|
5 |
Model-based hyperparameter optimizationCrouther, Paul 04 1900 (has links)
The primary goal of this work is to propose a methodology for discovering hyperparameters.
Hyperparameters aid systems in convergence when well-tuned and handcrafted. However,
to this end, poorly chosen hyperparameters leave practitioners in limbo, between concerns
with implementation or improper choice in hyperparameter and system configuration. We
specifically analyze the choice of learning rate in stochastic gradient descent (SGD), a popular
algorithm. As a secondary goal, we attempt the discovery of fixed points using smoothing of
the loss landscape by exploiting assumptions about its distribution to improve the update
rule in SGD. Smoothing of the loss landscape has been shown to make convergence possible in
large-scale systems and difficult black-box optimization problems. However, we use stochastic
value gradients (SVG) to smooth the loss landscape by learning a surrogate model and then
backpropagate through this model to discover fixed points on the real task SGD is trying to
solve. Additionally, we construct a gym environment for testing model-free algorithms, such
as Proximal Policy Optimization (PPO) as a hyperparameter optimizer for SGD. For tasks,
we focus on a toy problem and analyze the convergence of SGD on MNIST using model-free
and model-based reinforcement learning methods for control. The model is learned from
the parameters of the true optimizer and used specifically for learning rates rather than for
prediction. In experiments, we perform in an online and offline setting. In the online setting,
we learn a surrogate model alongside the true optimizer, where hyperparameters are tuned
in real-time for the true optimizer. In the offline setting, we show that there is more potential
in the model-based learning methodology than in the model-free configuration due to this
surrogate model that smooths out the loss landscape and makes for more helpful gradients
during backpropagation. / L’objectif principal de ce travail est de proposer une méthodologie de découverte des hyperparamètres.
Les hyperparamètres aident les systèmes à converger lorsqu’ils sont bien réglés et
fabriqués à la main. Cependant, à cette fin, des hyperparamètres mal choisis laissent les praticiens
dans l’incertitude, entre soucis de mise en oeuvre ou mauvais choix d’hyperparamètre et
de configuration du système. Nous analysons spécifiquement le choix du taux d’apprentissage
dans la descente de gradient stochastique (SGD), un algorithme populaire. Comme objectif
secondaire, nous tentons de découvrir des points fixes en utilisant le lissage du paysage des
pertes en exploitant des hypothèses sur sa distribution pour améliorer la règle de mise à jour
dans SGD. Il a été démontré que le lissage du paysage des pertes rend la convergence possible
dans les systèmes à grande échelle et les problèmes difficiles d’optimisation de la boîte noire.
Cependant, nous utilisons des gradients de valeur stochastiques (SVG) pour lisser le paysage
des pertes en apprenant un modèle de substitution, puis rétropropager à travers ce modèle
pour découvrir des points fixes sur la tâche réelle que SGD essaie de résoudre. De plus, nous
construisons un environnement de gym pour tester des algorithmes sans modèle, tels que
Proximal Policy Optimization (PPO) en tant qu’optimiseur d’hyperparamètres pour SGD.
Pour les tâches, nous nous concentrons sur un problème de jouet et analysons la convergence
de SGD sur MNIST en utilisant des méthodes d’apprentissage par renforcement sans modèle
et basées sur un modèle pour le contrôle. Le modèle est appris à partir des paramètres du
véritable optimiseur et utilisé spécifiquement pour les taux d’apprentissage plutôt que pour
la prédiction. Dans les expériences, nous effectuons dans un cadre en ligne et hors ligne.
Dans le cadre en ligne, nous apprenons un modèle de substitution aux côtés du véritable
optimiseur, où les hyperparamètres sont réglés en temps réel pour le véritable optimiseur.
Dans le cadre hors ligne, nous montrons qu’il y a plus de potentiel dans la méthodologie
d’apprentissage basée sur un modèle que dans la configuration sans modèle en raison de ce
modèle de substitution qui lisse le paysage des pertes et crée des gradients plus utiles lors de
la rétropropagation.
|
Page generated in 0.1212 seconds