• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effects of nicotine sequestration on the dynamics of hyperparasitism in a stage-structured model of Manduca sexta and its related parasitoid wasps

Zimmerman, Mark P 01 January 2015 (has links)
Two proposed models will be used to help answer a long observed question in the dynamics of \textit{Manduca sexta} and its related parasitoid wasps-Why is there a large difference in diversity in hyperparasitoid species between tobacco and other related plants such as tomato? Two stage structured differential equation models are presented. The first is a single patch model to study the changes in dynamics that occur between hosts, parasitoids, and hyperparasitoids as the amount of nicotine in the plant increases. The second is a two patch model that allows hyperparasitoids to choose between patches that are nicotine negative (i.e. tomato plants) and nicotine positive (i.e. tobacco plants). Both models will be used to investigate how host nicotine sequestration may impact hyperparasitoid diversity.
2

Estimation de l'impact des parasitoïdes sur les populations de pucerons en champ

Leblanc, Alexandre 05 1900 (has links)
À partir d'un modèle existant de dynamique de populations de pucerons, nous avons développé une méthode permettant de quantifier la contribution de parasitoïdes à la réduction du maximum de densité de pucerons. La méthode a été validée, sur deux ans en champ de soya, en utilisant le modèle biologique composé du puceron du soya (Aphis glycines Matsumura) et de Aphelinus certus Jasnosh, son parasitoïde le plus abondant au nord-est de l'Amérique du Nord. La méthode a estimé que les densités naturelles de A. certus n'avait réduit les pics de densités de pucerons que de 1-6%. La cause de cette faible régulation est associée à un établissement tardif des populations de A. certus en champ de soya, mais les mécanismes sous-jacents restent inconnus. À cet effet, les proportions d'hyperparasitisme sur A. certus, avant le pic de densité de pucerons, étaient trop faible pour que l'hyperparasitisme puisse en être tenu responsable. Concernant la dynamique des populations de pucerons, nous avons proposé une re-paramétrisation du modèle mentionné précédemment afin de faciliter l'interprétation de ses paramètres lorsque la colonisation des champs par les pucerons n'était pas simultanée. Cette stratégie nous a permis d'établir que l'occurrence du pic de densité de puceron du soya est facilement prédictible de sa date de colonisation en champ. Nous recommandons l'utilisation de modèles afin de prédire les pics de densité de pucerons et d'utiliser la méthode d'estimation de l'impact afin d'incorporer des stratégies de relâchers augmentatifs de parasitoïdes aux programmes de lutte existants contre les pucerons. / Building upon an existing aphid population dynamics model, we develop a method to quantify the contribution of parasitoids in reducing the maximum aphid density. We validated the method, over a two years study in soybean fields, using the biological model made of the soybean aphid (Aphis glycines Matsumura) and Aphelinus certus Jasnosh, its most abundant parasitoid in north-eastern North America. The method estimated that natural populations of A. certus reduced peak soybean aphid densities by only 1-6%. The cause of this low regulation is associated to the late establishment of A. certus population in soybean field, although the underlying mechanisms remains unknown. Proportion hyperparasitism on A. certus, before peak soybean aphid densities, were too low for hyperparasitism to be accounted for the poor efficacy of A. certus in regulating the soybean aphid. Regarding aphid population dynamics, we proposed a re-parameterisation of the aforementioned model to facilitate the interpretation of its parameters when field colonization by aphids is not simultaneous. This allowed us to identify a high predictability in peak aphid densities from colonization time for the soybean aphid. We recommend using models to forecast peak aphid densities and to use the impact assessment method to incorporate augmentative parasitoid release strategies into aphid management programmes.
3

Effect of physiological and behavioural characteristics of parasitoids on host specificity testing outcomes and the biological control of Paropsis charybdis

Murray, Tara J. January 2010 (has links)
An established host-parasitoid-hyperparasitoid system was used to investigate how the physiological and behavioural characteristics of parasitoids influence the outcomes of laboratory-based host specificity tests. The characteristics of the two pteromalid egg parasitoids, Enoggera nassaui (Girault) and Neopolycystus insectifurax Girault, were assessed and interpreted in regard to the particular host specificity testing methods used and the control of the eucalypt defoliating beetle Paropsis charybdis Stål (Chrysomelidae) in New Zealand. The physiology of N. insectifurax was examined to determine how to increase production of female parasitoids that were physiologically capable and motivated to parasitise P. charybdis eggs in laboratory trials. Neopolycystus insectifurax were found to be more synovigenic than E. nassaui. Provisioning them with honey and host stimuli for three days, and allowing females to parasitise hosts in isolation (i.e. in the absence of competition) was an effective means of achieving these goals. No-choice tests were conducted in Petri dish arenas with the four paropsine beetles established in New Zealand. All four were found to be within the physiological host ranges of E. nassaui and N. insectifurax, but their quality as hosts, as indicated by the percent parasitised and offspring sex ratios, varied. The results of paired choice tests between three of the four species agreed with those of no-choice tests in most instances. However, the host Trachymela catenata (Chapuis), which was parasitised at very low levels by E. nassaui in no-choice tests, was not accepted by that species in paired choice tests. A much stronger preference by N. insectifurax for P. charybdis over T. catenata was recorded in the paired choice test than expected considering the latter was parasitised at a high level in the no-choice test. The presence of the target host in paired choice tests reduced acceptance of lower ranked hosts. Both no-choice and choice tests failed to predict that eggs of the acacia feeding beetle Dicranosterna semipunctata (Chapuis) would not be within the ecological host range of E. nassaui and N. insectifurax. Behavioural observations were made of interspecific competition between E. nassaui and N. insectifurax for access to P. charybdis eggs. Two very different oviposition strategies were identified. Neopolycystus insectifurax were characterised by taking possession of, and aggressively guarding host eggs during and after oviposition. They also appeared to selectively oviposit into host eggs already parasitised by E. nassaui, but did not emerge from significantly more multi-parasitised hosts than E. nassaui. Enoggera nassaui did not engage in contests and fled when approached by N. insectifurax. Although often prohibited from ovipositing by N. insectifurax, E. nassaui were able to locate and begin ovipositing more quickly, and did not remain to guard eggs after oviposition. It is hypothesised that although N. insectifurax have a competitive advantage in a Petri dish arena, E. nassaui may be able to locate and parasitise more host eggs in the field in New Zealand, where competition for hosts in is relatively low. The biology of the newly established encyrtid Baeoanusia albifunicle Girault was assessed. It was confirmed to be a direct obligate hyperparasitoid able to exploit E. nassaui but not N. insectifurax. Field and database surveys found that all three parasitoids have become established in many climatically different parts of New Zealand. Physiological characteristics were identified that may allow B. albifunicle to reduced effective parasitism of P. charybdis by E. nassaui to below 10%. However, the fact that hyperparasitism still prevents P. charybdis larvae from emerging, and that B. albifunicle does not attack N. insectifurax, may preclude any significant impact on the biological control of P. charybdis. Overall, parasitoid ovigeny and behavioural interactions with other parasitoids were recognised as key characteristics having the potential to influence host acceptance in the laboratory and the successful biological control of P. charybdis in the field. It is recommended that such characteristics be considered in the design and implementation of host specificity tests and might best be assessed by conducting behavioural observations during parasitoid colony maintenance and the earliest stages of host specificity testing.

Page generated in 0.0725 seconds