• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ALTERNATIVE METHODOLOGIES FOR BORESIGHT CALIBRATION OF GNSS/INS-ASSISTED PUSH-BROOM HYPERSPECTRAL SCANNERS ON UAV PLATFORMS

Tian Zhou (6114419) 10 June 2019 (has links)
<p>Low-cost unmanned aerial vehicles (UAVs) utilizing push-broom hyperspectral scanners are poised to become a popular alternative to conventional remote sensing platforms such as manned aircraft and satellites. In order to employ this emerging technology in fields such as high-throughput phenotyping and precision agriculture, direct georeferencing of hyperspectral data using onboard integrated global navigation satellite systems (GNSS) and inertial navigation systems (INS) is required. Directly deriving the scanner position and orientation requires the spatial and rotational relationship between the coordinate systems of the GNSS/INS unit and hyperspectral scanner to be evaluated. The spatial offset (lever arm) between the scanner and GNSS/INS unit can be measured manually. However, the angular relationship (boresight angles) between the scanner and GNSS/INS coordinate systems, which is more critical for accurate generation of georeferenced products, is difficult to establish. This research presents three alternative calibration approaches to estimate the boresight angles relating hyperspectral push-broom scanner and GNSS/INS coordinate systems. For reliable/practical estimation of the boresight angles, the thesis starts with establishing the optimal/minimal flight and control/tie point configuration through a bias impact analysis starting from the point positioning equation. Then, an approximate calibration procedure utilizing tie points in overlapping scenes is presented after making some assumptions about the flight trajectory and topography of covered terrain. Next, two rigorous approaches are introduced – one using Ground Control Points (GCPs) and one using tie points. The approximate/rigorous approaches are based on enforcing the collinearity and coplanarity of the light rays connecting the perspective centers of the imaging scanner, object point, and the respective image points. To evaluate the accuracy of the proposed approaches, estimated boresight angles are used for ortho-rectification of six hyperspectral UAV datasets acquired over an agricultural field. Qualitative and quantitative evaluations of the results have shown significant improvement in the derived orthophotos to a level equivalent to the Ground Sampling Distance (GSD) of the used scanner (namely, 3-5 cm when flying at 60 m).</p>
2

Early Detection of Dicamba and 2,4-D Herbicide Injuries on Soybean with LeafSpec, an Accurate Handheld Hyperspectral Leaf Scanner

Zhongzhong Niu (13133583) 22 July 2022 (has links)
<p>  </p> <p>Dicamba (3,6-dichloro-2-methoxybenzoic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are two widely used herbicides for broadleaf weed control in soybeans. However, off-target application of dicamba and 2,4-D can cause severe damage to sensitive vegetation and crops. Early detection and assessment of off-target damage caused by these herbicides are necessary to help plant diagnostic labs and state regulatory agencies collect more information of the on-site conditions so to develop solutions to resolve the issue in the future. In 2021, the study was conducted to detect damage to soybean leaves caused by dicamba and 2,4-D by using LeafSpec, an accurate handheld hyperspectral leaf scanner. . High resolution single leaf hyperspectral images of 180 soybean plants in the greenhouse exposed to nine different herbicide treatments were taken 1, 7, 14, 21 and 28 days after herbicide spraying. Pairwise PLS-DA models based on spectral features were able to distinguish leaf damage caused by two different modes of action herbicides, specifically dicamba and 2,4-D, as early as 2 hours after herbicide spraying. In the spatial distribution analysis, texture and morphological features were selected for separating the dosages of herbicide treatments. Compared to the mean spectrum method, new models built upon the spectrum, texture, and morphological features, improved the overall accuracy to over 70% for all evaluation dates. The combined features are able to classify the correct dosage of the right herbicide as early as 7 days after herbicide sprays. Overall, this work has demonstrated the potential of using spectral and spatial features of LeafSpec hyperspectral images for early and accurate detection of dicamba and 2,4-D damage in soybean plants.</p> <p>   </p>

Page generated in 0.0892 seconds