• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wavelet-Domain Hyperspectral Soil Texture Classification

Zhang, Xudong 08 May 2004 (has links)
This thesis presents an automatic soil texture classification system using hyperspectral soil signals and wavelet-based statistical models. Previous soil texture classification systems are closely related to texture classification methods, which use images for training and testing. Although using image-based algorithms is a straightforward way to conduct soil texture classification, our research shows that it does not provide reliable and consistent results. Rather, we develop a novel system using hyperspectral soil textures, better known as hyperspectral soil signals, which provide rich information and intrinsic properties about soil textures. Hyperspectral soil textures, in their very nature, are nonstationary and time-varying. Therefore, the wavelet transform, which is proven to be successful in such applications, is incorporated. In this study, we incorporate two wavelet-domain statistical models, namely, the maximum likelihood (ML) and the hidden Markov model (HMM) for the classification task. Experimental results show that this method is reliable and robust. It is also more effective and efficient in terms of practical implementation than the traditional image-based methods.

Page generated in 0.0951 seconds