1 |
Cortisol Responses to Stress in Allergic Children: Interaction with the Immune ResponseBuske-Kirschbaum, Angelika 03 March 2014 (has links) (PDF)
Allergic manifestations are increasingly common in infants and children. Accumulating evidence suggests that the ‘epidemic’ increase of childhood allergy may be associated with environmental factors such as stress. Although the impact of stress on the manifestation and exacerbation of allergy has been demonstrated, the underlying mechanisms of stress-induced exacerbation are still obscure. A growing number of studies have suggested an altered hypothalamus-pituitary-adrenal (HPA) axis function to stress in allergic children. It is speculated that a dysfunctional HPA axis in response to stress may facilitate and/or consolidate immunological aberrations and thus, may increase the risk for allergic sensitization and exacerbation especially under stressful conditions. In the present review the potential impact of a hyporesponsive as well as a hyperresponsive HPA axis on the onset and chronification of childhood allergy is summarized. Moreover, potential factors that may contribute to the development of an aberrant HPA axis responsiveness in allergy are discussed. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
2 |
Impact des acides gras alimentaires sur le système dopaminergique mésolimbique : effets différentiels des acides gras saturés et mono-insaturésHryhorczuk, Cecile 06 1900 (has links)
Les comportements motivés dont l‟addiction aux drogues d‟abus, mettent en jeu le système dopaminergique mésolimbique. Aussi connu sous le nom de système de la récompense, celui-ci comprend les neurones à dopamine de l‟aire tegmentale ventrale qui projettent, entre autres, vers le noyau accumbens. Tout comme les neurones de l‟hypothalamus, les neurones à dopamine de l‟aire tegmentale ventrale répondent aux hormones telles que la leptine, l‟insuline et la ghréline pour modifier la prise alimentaire, la motivation ou encore le tonus dopaminergique. Ceci indique que le système dopaminergique mésolimbique est sensible aux signaux hormonaux circulants et suggère que les neurones de l‟aire tegmentale ventrale pourraient percevoir les signaux métaboliques comme le glucose ou les acides gras. De plus, plusieurs études chez les humains et les rongeurs démontrent que l‟obésité et les diètes riches en gras affectent négativement la fonction dopaminergique mésolimbique.
Étant donné les lacunes qui demeurent quant aux mécanismes impliqués dans la dysfonction du système dopaminergique mésolimbique induite par la nourriture riche en gras, nous avons cherché à évaluer les effets de l‟acide oléique et de l‟acide palmitique, deux des acides gras les plus abondants dans l‟organisme et l‟alimentation contemporaine, sur le système de la récompense. Ces deux acides gras, l‟un saturé (acide palmitique) et l‟autre mono-insaturé (acide oléique), se distinguent par leurs effets différentiels sur la prise alimentaire, la signalisation hormonale ou encore leur métabolisme intracellulaire mais aussi sur la santé cardiovasculaire et mentale.
Nous avons dans un premier temps évalué la capacité du système dopaminergique mésolimbique à détecter les acides gras. Nous avons comparé les effets de l‟injection d‟acide oléique ou d‟acide palmitique dans l‟aire tegmentale ventrale sur la prise alimentaire, la motivation et l‟activité électrique des neurones à dopamine de l‟aire tegmentale ventrale. Nos résultats montrent que l‟acide oléique, mais pas l‟acide palmitique, diminue la prise alimentaire et le comportement motivé. L‟acide oléique inhibe également l‟activité électrique des neurones à dopamine, ces effets semblent dépendre de son entrée dans la cellule. De plus, nous montrons que les neurones à dopamine de l‟aire tegmentale ventrale expriment plusieurs
3
gènes de protéines importantes pour le transport et le métabolisme des acides gras et qu‟ils sont capables de d‟incorporer les acides gras.
Nous avons dans un second temps évalué les effets de l‟acide oléique et de l‟acide palmitique dérivés de l‟alimentation. Nous avons soumis des rats à l‟une de ces trois diètes : une riche en gras enrichie en acide oléique, une riche en gras enrichie en acide palmitique ou une contrôle faible en gras. Après huit semaines, et en l‟absence d‟obésité ou d‟altérations métaboliques majeures, la diète enrichie en acide palmitique, mais pas la diète isocalorique enrichie en acide oléique, induit une hyposensibilité aux effets récompensants et locomoteurs de l‟amphétamine, associée, entre autres, à la diminution de la signalisation du récepteur à la dopamine D1R et de l‟expression du transporteur de la dopamine.
Nous avons finalement exploré l‟impact de ces diètes sur l‟activité de l‟axe hypothalamo-hypophysaire-surrénalien. Les résultats montrent que la diète enrichie en acide palmitique altère aussi la fonction de l‟axe et l‟expression de plusieurs gènes cibles des corticostéroïdes, sans toutefois modifier le comportement anxieux.
Ce travail de doctorat vient compléter les connaissances sur les dysfonctions du système dopaminergique mésolimbique induites par la nourriture riche en gras. Il met en lumière les effets différentiels des classes d‟acides gras et les mécanismes par lesquels ils modulent les comportements motivés et alimentaires. De façon chronique, avant l‟apparition d‟obésité et d‟altérations métaboliques, les acides gras saturés, et non les acides gras mono-insaturés, issus de l‟alimentation perturbent le fonctionnement de l‟axe hypothalamo-hypophysaire-surrénalien et réduisent la fonction dopaminergique. Ceci pourrait contribuer à perpétuer la recherche et la prise de ce type d‟acides gras afin de compenser ce déficit. / The mesolimbic dopamine system, also known as the reward system, is well recognized for its role in motivated reward-related behaviours such as drug addiction. It consists of dopamine neurons originating in the ventral tegmental area that project, among others, to the nucleus accumbens. Similar to neurons in the hypothalamus, dopamine neurons in the ventral tegmental area can detect circulating hormones such as leptin, insulin and ghrelin to adjust food intake, motivation and dopamine tone. This suggests that they could also perceive nutritional signals like glucose and fatty acids. Moreover, several lines of evidence exist showing that palatable food enriched in fat and obesity reduce mesolimbic dopamine function.
Given the many unknowns regarding the mechanisms of obesity-induced dopamine dysfunction, and given that fatty acids differentially influence cardiovascular and mental health according to their class, we sought to determine the effects of the monounsaturated fatty acid oleic acid and the saturated fatty acid palmitic acid, two of the most abundant fatty acids in the body and foods, on mesolimbic dopamine function. Notably palmitic acid and oleic acid differ in their intracellular metabolic fate as well as in their effects on food intake and leptin and insulin signaling at the level of the hypothalamus.
We first evaluated the fatty acid sensing properties of the mesolimbic dopamine system. We looked at the effects of the injection of oleic acid or palmitic acid in the ventral tegmental area on food intake, motivation and dopamine neurons activity. Our results demonstrate that oleic acid, but not palmitic acid, reduces basal and motivated feeding behavior and neuronal activity. Those effects seem to be dependent on its entry into the cell. Moreover, using a neurons culture system we show that dopamine neurons can uptake fatty acids.
We then examined the effect of food-derived oleic and palmitic acid on mesolimbic dopamine function. We assigned rats to a low-fat control diet or to one or the other of a high-fat diet: one enriched in oleic acid or one enriched in palmitic acid. The two high-fat diets are isocaloric and differed only in the fat source. Following eight weeks of feeding, the palmitic
5
acid-enriched high-fat diet, but not the oleic acid-enriched diet, decreased the sensitivity to the rewarding and locomotor-sensitizing effects of amphetamine. This was associated with a reduction of dopamine receptor D1R signaling and dopamine transporter expression. Importantly this occured independently of weight gain and hormonal changes.
Lastly, we explored the impact of those diets on the activity of the hypothalamus-pituitary-adrenal axis. Results show that the saturated fat diet alters the function of the axis as well as the expression of several keys genes targeted by glucocorticoids in the hypothalamus but without affecting anxiety-related behavior.
This work provides further insight into how the mesolimbic dopamine system is altered by high-fat food consumption. It brings light to the differential effects of two classes of fatty acids and the mechanisms by which they modulate food intake and motivation. The prolonged intake of saturated fat, but not mono-unsaturated fat, disrupts the hypothalamus-pituitary-adrenal axis and decreases mesolimbic dopamine function prior to the onset of obesity and major metabolic alterations. Dysfunction of dopaminergic systems induced by saturated fat consumption could promote further intake of such palatable food as a means to compensate for reward hyposensitivity.
|
3 |
Cortisol Responses to Stress in Allergic Children: Interaction with the Immune ResponseBuske-Kirschbaum, Angelika January 2009 (has links)
Allergic manifestations are increasingly common in infants and children. Accumulating evidence suggests that the ‘epidemic’ increase of childhood allergy may be associated with environmental factors such as stress. Although the impact of stress on the manifestation and exacerbation of allergy has been demonstrated, the underlying mechanisms of stress-induced exacerbation are still obscure. A growing number of studies have suggested an altered hypothalamus-pituitary-adrenal (HPA) axis function to stress in allergic children. It is speculated that a dysfunctional HPA axis in response to stress may facilitate and/or consolidate immunological aberrations and thus, may increase the risk for allergic sensitization and exacerbation especially under stressful conditions. In the present review the potential impact of a hyporesponsive as well as a hyperresponsive HPA axis on the onset and chronification of childhood allergy is summarized. Moreover, potential factors that may contribute to the development of an aberrant HPA axis responsiveness in allergy are discussed. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
4 |
Endokrinní a metabolické aspekty vybraných spánkový ch poruch / Endocrine and Metabolic Aspects of Various Sleep DisordersVimmerová-Lattová, Zuzana January 2013 (has links)
Endocrine and Metabolic Aspects of Various Sleep Disorders MUDr. Zuzana Vimmerová Lattová Abstract: Recent epidemiological and experimental data suggest a negative influence of shortened or disturbed night sleep on glucose tolerance. However, no comparative studies of glucose metabolism have been conducted in clinical sleep disorders. Dysfunction of the HPA axis may play a causative role in some sleep disorders and in other sleep disorders it may be secondary to the sleep disorder. Moreover, dysfunction of the HPA axis is regarded as a possible causative factor for the impaired glucose sensitivity associated with disturbed sleep. However, data on HPA system activity in sleep disorders are sparse and conflicting. We studied 25 obstructive sleep apnea (OSA) patients, 18 restless legs syndrome (RLS) patients, 21 patients with primary insomnia and compared them to 33 healthy controls. We performed oral glucose tolerance test and assessed additional parameters of glucose metabolism. The dynamic response of the HPA system was assessed by the DEX-CRH-test which combines suppression (dexamethasone) and stimulation (CRH) of the stress hormone system. Compared to controls, increased rates of impaired glucose tolerance were found in OSA (OR: 4.9) and RLS (OR: 4.7), but not in primary insomnia. In addition, HbA1c...
|
Page generated in 0.1138 seconds