1 |
Ice navigation with ice compressionin the Gulf of FinlandBerg, Niklas January 2010 (has links)
<p>Safe winter navigation is a hot topic. Not only is the traffic density increasing but theenvironmental considerations are also getting bigger. An oil leakage from a big oiltanker can be of catastrophic proportions in the wrong area and more trafficincreases the risk of an accident. A project that aims for safer winter navigation isSafeWIN. The aim of this project is to develop a forecasting system for compressiveice and thus make winter navigation safer.This thesis is part of above mentioned project and aims to investigate what influenceice compression and ice class has on winter navigation. Vessels are exclusivelyAFRAMAX size tankers sailing on Primorsk in the Gulf of Finland during 2006. Transitdata comes from AIS tracks recorded by the Swedish Maritime Administration. Adatabase with tanker transits has been created and this information is the source forthe studies in this thesis. Included in the database are wind data, ice particulars andtransit information such as speed, and time at different activities during the transit.Average values for a transit has been investigated for comparison and to get a pictureof an average transit.Velocity, waiting time and time with assisting icebreaker are parameters that arebelieved to show how a tanker performs in winter navigation. These parameters arecompared with ice compression and ice class separately to see if there is acorrelation. Ice compression has also been investigated for correlation towards windforce to see if stronger wind generates stronger compression.Using the velocity in different ice compressions an estimate of ice resistance that stemfrom ice compression has been extracted by means of Lindqvist’s formula.</p>
|
2 |
Ice navigation with ice compressionin the Gulf of FinlandBerg, Niklas January 2010 (has links)
Safe winter navigation is a hot topic. Not only is the traffic density increasing but theenvironmental considerations are also getting bigger. An oil leakage from a big oiltanker can be of catastrophic proportions in the wrong area and more trafficincreases the risk of an accident. A project that aims for safer winter navigation isSafeWIN. The aim of this project is to develop a forecasting system for compressiveice and thus make winter navigation safer.This thesis is part of above mentioned project and aims to investigate what influenceice compression and ice class has on winter navigation. Vessels are exclusivelyAFRAMAX size tankers sailing on Primorsk in the Gulf of Finland during 2006. Transitdata comes from AIS tracks recorded by the Swedish Maritime Administration. Adatabase with tanker transits has been created and this information is the source forthe studies in this thesis. Included in the database are wind data, ice particulars andtransit information such as speed, and time at different activities during the transit.Average values for a transit has been investigated for comparison and to get a pictureof an average transit.Velocity, waiting time and time with assisting icebreaker are parameters that arebelieved to show how a tanker performs in winter navigation. These parameters arecompared with ice compression and ice class separately to see if there is acorrelation. Ice compression has also been investigated for correlation towards windforce to see if stronger wind generates stronger compression.Using the velocity in different ice compressions an estimate of ice resistance that stemfrom ice compression has been extracted by means of Lindqvist’s formula.
|
3 |
Ridged sea ice modelling in climate applicationsMårtensson, Sebastian January 2013 (has links)
This work aims to increase our understanding of the nature of large scale features of sea ice from a dynamics point of view.Sea ice plays an important part in the exchange of heat and humidity between sea and air and thus is an important component of the climate system. Its physical presence also directly impacts the various forms of life such as diatoms, polar bears and humans alike.The dynamics of sea ice affect both weather and climate, through the large scale drift in the Arctic from the Siberian coast towards Fram Strait, through creation of cracks in the ice called leads or polynyas, and through ridging and other mechanical deformations of ice floes.In this work, we have focused on modelling of ridged ice for a number of reasons. Direct observations of the internal ice state is very difficult to perform and in general, observations of sea ice are either sparse or of limited information density. Ridged ice can be seen as the memory of high ice stress events, giving us a view on these highly dynamic events. Ridging is of major importance for the ice thickness distribution, as the thickest ice can only be formed through mechanical processes. Further, ridged ice is of direct interest for anyone conducting shipping through seasonal or perennial ice covered seas as it can form impenetrable barriers or in extreme even cases crush a ship caught within the ice pack. To this end, a multi-category sea ice model, the HELsinki Multi category Ice model (HELMI), was implemented into the Rossby Centre Ocean model (RCO). HELMI has explicit formulations for ridged and rafted ice, as well as sub-grid scale ice thickness distribution (a feature shared with other multi category models) and an ice strength based on energetics. These features give RCO better representation of sub-grid scale physics and gives us the possibility to study the deformed ice in detail. In paper I we look at the change in behaviour in the Arctic as the ice becomes more mobile, leading to a slight increase in modelled ridged ice volume in the central Arctic, despite a general trend of a decreasing ice cover.Paper II takes us to the Baltic Sea and the possibilities of modelling ridge ice concentration with a statistical model.In Paper III we investigate how the diminishing ice cover in future scenarios affects the biological activity in the Baltic Sea.Finally Paper IV investigates how the ice stress and the internal ice force can be interpreted in terms of ice compression on the ship scale. / <p>At the time of the doctoral defence the following paper was unpublished and had a status as follows: Paper 4: Manuscript</p>
|
Page generated in 0.0873 seconds