Spelling suggestions: "subject:"iceflow"" "subject:"iceflows""
1 |
A geographical information system-based synthesis of the Labrador Sector of the Laurentide Ice SheetKnight, Jane January 1996 (has links)
No description available.
|
2 |
The glaciations of the Conway Catchment, north WalesFishwick, A. B. January 1978 (has links)
The aim of this thesis has been to establish the patterns of ice movement in the Conway catchment and the relationships between Welsh and Irish Sea ice on the coast. Work has concentrated on analyses of till particle sizes, lithologies and fabrics (84 samples from inland and 56 from coastal exposures), supplemented by information from boreholes (c. 300)t meltwater channels and erosional and depositional landforms. Trend surface, cluster and factor analyses have been used where appropriate to synthesise till data. A north-eastwards flow of ice in the south paralleling the upper Conway and Machno valleys, points to an ice shed running north-westwards from Migneint to the head of the Lledr valley. The north-north-eastwards flow off the Carneddau. indicates these mountains also acted as an important source of ice. The northwards flow of ice along the eastern margin of the Vale is attributed to the influence of the marked topography of the Vale. The evidence does not favour an ice cap on the Denbighshire Moors. The distribution of meltwater channels and till suggests that ice overtopped the eastern watershed of the catchment during the last glaciation. The uppermost till on the coast is the distinctive Red Irish Sea till which is found as far South as Llansantffraid Glan Conway and on Great Ormes Head at a height of 190 m (620 ft). in coastal exposures it is underlain by Welsh and Irish Sea tills. No direct evidence of the age or the time intervals between successive tills is available but there is nothing to suggest they are not Devensian in age. The possibilities that the local sequence demonstrates a readvance or alternatively conflicts between Welsh and Irish Sea glaciers are explored, and tentative correlations drawn with sequences described in adjacent areas.
|
3 |
The use of mineral magnetic analysis in the study of glacial diamictsWalden, John January 1990 (has links)
No description available.
|
4 |
Hydrological controls on Greenland Ice Sheet motionTedstone, Andrew Jachnik January 2015 (has links)
An improved understanding of the processes controlling the dynamics of the Greenland Ice Sheet is needed to enable more accurate determination of the response of the ice sheet to projected climate change. Meltwater produced on the ice sheet surface can penetrate to the bed and cause ice motion to speed up through enhanced basal sliding. However, the importance of coupled hydro-dynamics both to current ice sheet motion and future stability over the coming century is unclear. This thesis presents observations from the south-west Greenland Ice Sheet which improve our understanding of coupled hydro-dynamics. It commences with an investigation of the response of ice motion to exceptional meltwater forcing during summer 2012. Simultaneous field observations of ice motion (by GPS) and proglacial discharge show that, despite two extreme melt events during July 2012 and summer ice sheet runoff 3.9 s.d. above the 1958– 2011 mean which resulted in faster summer motion, net annual motion was slower than in the average melt year of 2009. This suggests that surface melt-induced acceleration of land-terminating regions of the ice sheet will remain insignificant even under extreme melting scenarios. The thesis then examines spatial variability in ice motion, in relation to an inferred subglacial drainage axis, using GPS and satellite radar observations from a land-terminating margin up to 20 km inland where ice is 800 m thick. Whilst spatial variability in subglacial drainage system configuration is found to control ice motion at short timescales, the proportional contribution of summer motion to annual motion is almost invariant. The structure of the subglacial drainage system does not therefore appear to significantly influence spatial variations in net summer speedup. Lastly, observations are made by applying feature tracking to 30 years of optical satellite imagery in a ~170 by 50 km area along the ice sheet margin (where ice reaches ~850 m thick) to examine whether coupled hydrology-dynamics affects inter-annual ice motion. Hydro-dynamic coupling resulted in net ice motion slowdown during a period of clear climate warming. Further increases in meltwater production may therefore reduce ice sheet motion. The thesis concludes that at land-terminating margins of the Greenland Ice Sheet, (1) larger annual meltwater volumes do not result in faster annual ice motion; (2) the detailed structure of the subglacial drainage network appears unimportant to the role of summer motion in determining annual motion; and (3) atmospheric warming over several decades has been accompanied by a slowdown in ice motion. As such, hydro-dynamic coupling is unlikely to form a significant positive feedback between surface melting and ice motion in response to projected climate warming. The wider relevance of these findings to tidewater systems requires further investigation.
|
5 |
Quantifying Feedbacks Between Ice Flow, Grain Size, and Basal Meltwater on Annual and Decadal Time-Scales Using a 2-D Ice Sheet Model:Rines, Joshua H. January 2022 (has links)
Thesis advisor: Mark D. Behn / Ice sheet flow is strongly controlled by the conditions at the ice-bed interface. While these processes are hard to observe directly, comparisons between numerical modeling and ice surface observations can be used to indirectly infer subglacial processes. Specifically, seasonal summer speed up near the margin of the Greenland Ice Sheet (GIS) has been linked to the presence of subglacial water. For decades, the Glen flow law has been the most widely-accepted constitutive relation for modeling ice flow. However, while the Glen law captures the temperature-dependent, nonlinear viscosity of ice, it does not explicitly incorporate ice grain size, which has been shown in laboratory experiments to influence ice rheology. To compensate for the lack of explicit grain size dependence, ice sheet models often utilize an “enhancement factor” that modifies the flow law to better match observations, but does not provide insight into the physical processes at play. Using a grain size sensitive rheology that incorporates grain size evolution due to dynamic recrystallization and grain growth, I model the effects of seasonal variations of subglacial hydrology in a 2-D vertical cross-section of ice flow on both annual and inter-annual timescales. The presence of subglacial water reduces the frictional coupling between the ice and the bed. Here I simulate the presence of water at the ice-bed interface during the melt season using patches of free-slip and explore a range of patch sizes and geometries to investigate their role in modulating ice surface velocities and grain size within the ice. I compare modeled winter and summer surface velocities to observations taken on the western margin of the GIS and find that realistic surface velocities are achievable using agrain size sensitive flow law without the introduction of an enhancement factor. Further, the grain size of the internal ice responds on an inter-annual timescale to these seasonal forcings at the bed, potentially leading to long-term changes in surface velocities. / Thesis (MS) — Boston College, 2022. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
|
6 |
Observations and Modeling of Greenland Outlet Glacier DynamicsEnderlin, Ellyn Mary 29 August 2013 (has links)
No description available.
|
7 |
LiDAR-bildanalys av flutings i södra Norrbotten : Kartering och datering av avvikande isrörelseriktningarVallin, Sara January 2014 (has links)
The aim of this study was to map and date glacial flutings with ice flows deviating from the predominating northwesterly ice flow direction in the southern part of Norrbotten County in northern Sweden, and also to investigate if parts of the glacial landscape are older than previously thought. The traditional view is that most landforms in the area were formed during the late Weichselian (W3). Analysis of the new high resolution elevation model (2 m grid) derived from laser scanning was performed after treating the data with a hillshade tool in ArcMap to reveal terrain features such as flutings. The analysis resulted in a map showing four main groups of deviating ice flows (N-S, NO-SV, SO-NV and S-N) and several westerly ice flows. The majority of flutings with deviating ice flows were found in low terrain. This, together with studies suggesting a cold based late Weichselian ice sheet in Norrbotten, implies an old age of the deviating ice flows. The deviating ice flows are interpreted to originate from the first early Weichselian (W1), or predate the onset of the Weichselian glaciation. Some NV-SO flutings were located in high terrain, which implies a younger age relative to the low terrain flutings. They represent the youngest ice flow found in the area, possibly from the second early Weichselian (W2). The new elevation model clearly offers new possibilities for studying small scale landforms and shows that the traditional view of the Weichselian glaciation in northern Swedish needs to be reconsidered.
|
8 |
Quaternary geology, ice-flow history and till geochemistry of the Huckleberry Mine region, west-central British ColumbiaFerbey, Travis 19 November 2008 (has links)
The Huckleberry Mine region experienced a complex ice-flow history during the Late Wisconsinan Fraser Glaciation. Cross-cutting and superimposition relationships observed in the field, constrain the relative timing of ice-flow events and indicate that a westerly-directed ice-flow event was followed by a smaller magnitude east to northeast event. This ice-flow reversal can be explained by the existence of an ice divide in the central interior of British Columbia during the Fraser Glaciation maximum. Although ice thickness exceeded relief in the region during the glacial maximum, and glaciers flowed west, up-valley towards the Coast Mountains, locally, ice-flow direction appears to still have been influenced by topography.
Basal tills dominate the local Quaternary stratigraphy. These grey, overconsolidated, clayey-silt diamictons typically overlie Early Jurassic Telkwa Formation andesites, but they can also locally overlie advance-phase glaciofluvial sands and gravels. In the vicinity of the Main and East Zone areas, it is common to find visible pyrite and chalcopyrite grains (up to 3 mm in size), and mineralized clasts (pyrite +/- chalcopyrite) in the till matrix. At a 19 m vertical exposure, multiple till units were identified. These basal tills are distinguished primarily by changes in colour, matrix texture, and gravel content. Stratigraphic, sedimentological, lithological, and geochemical data from this exposure provide evidence of an ice-flow reversal in the Huckleberry Mine region during the Fraser Glaciation maximum.
Till geochemical data define the locations of known sources of copper mineralization in the Huckleberry Mine region. Maximum, minimum, and median copper values in near-surface basal till samples are 8924 ppm, 29 ppm, and 216 ppm, respectively (n=106), while those for sub-surface basal till samples are 4167 ppm, 18 ppm, and 187, respectively (n=230). Locally developed dispersal trains indicate that mineralization from these sources has been transported towards the east and west. These dispersal trains are detectable in both near-surface and sub-surface basal till samples and also provide further evidence of an ice-flow reversal in the Huckleberry Mine region. Two westward-directed dispersal trains, that are isolated or disconnected from dispersal of the Main Zone area, suggest and that there could be undiscovered bedrock mineralization on Huckleberry Mine property.
|
9 |
Analyse de la dynamique des glaciers himalayens et alpins à partir de 40 ans de données d’observation de la Terre / Analysis of himalayan and alpine glaciers dynamic with the use of 40 years of Earth's observation data.Dehecq, Amaury 09 November 2015 (has links)
Les glaciers de montagne ont un impact sociétal important que ce soit à l'échelle locale où ils influencent les ressources en eau et l'attractivité touristique d'une région, ou à l'échelle mondiale en contribuant au niveau des océans. Par ailleurs, les glaciers de montagne sont extrêmement sensibles aux variations climatiques et sont donc des indicateurs pertinents des évolutions climatiques passées et présentes, en particulier du réchauffement global.Une meilleure compréhension de la réponse des glaciers à ces changements, ou dynamique, est nécessaire afin d'estimer leur contribution au système Terre et leur évolution future. Les satellites d'observation de la Terre, par leur couverture globale et des acquisitions régulières, représentent un atout formidable pour suivre l'évolution des glaciers. L'archive à disposition est considérable et celle à venir promet d'être encore plus importante. Il est donc indispensable de développer des méthodes pour traiter cette masse de données.L'objectif de cette thèse est de mieux comprendre la réponse dynamique des glaciers du Pamir-Karakoram-Himalaya (PKH) et des Alpes aux changements climatiques actuels en mettant à profit les 40 années de données satellitaires disponibles. Dans un premier temps, nous avons développé une chaine de traitement semi-automatique qui permet de mesurer les vitesses annuelles de surface d'écoulement des glaciers par corrélation d'images à partir d'une archive satellitaire. Grâce à la redondance des acquisitions, il est possible d'obtenir des champs de vitesse plus complets, plus robustes et d'estimer statistiquement l'incertitude. L’application de ce traitement à l’archive Landsat a permis d’obtenirdes champs de vitesse pour l’ensemble de la région du PKH (~92 000 km2) sur la période 1998-2014et sur les Alpes (~2 000 km2, période 1999-2014) avec une couverture de 60-80 % et une incertituded’environ 4 m/an. Des champs de vitesse ont également été obtenus de manière moins systématique sur la période 1972-1998 pour le PKH. Dans un second temps, l'analyse des variations de vitesse sur ces périodes a montré un ralentissement des glaciers sur l'ensemble des deux chaines de montagne, en lien avec un amincissement des glaciers sur la même période. Les variations de vitesse sont très contrastées spatialement et sont cohérentes avec les motifs observés pour les variations d'épaisseur. En particulier, les glaciers du Karakoram et du Kunlun qui sont stables ou gagnent de la masse sur cette période montrent également des signes d'accélération, alors que les zones d'amincissement le plus important (Himalaya occidental, Nyenchen Tangla, Alpes) sont celles ou le ralentissement observé est le plus fort. Il semble donc que les variations de vitesse observées soient conditionnées au premier ordre par un signal climatique. / Mountain glaciers have a high societal impact, first at a local scale since they influence the water ressources and the touristic attractivity of a region, but also at a global scale, being major contributors to the present sea-level rise. Moreover, mountain glaciers are sensitive to climate forcing and are thus relevant indicators of past and present climate change and particularly present global warming. It is thus important to analyse the dynamic of these glaciers and quantify the changes that are affecting them so that their contribution to the Earth system and their future evolution can be better estimated. Satellite Earth Observation imagery, with its global coverage and repeated acquisition, represents a unique tool to quantify temporal changes affecting glaciers. The available archive is huge and the flux of new data will increase it even more.It is thus necessary to develop new methods to process this large archive.The objective of this thesis is to quantify the dynamic response of mountain glaciers in the Pamir-Karakoram-Himalaya (PKH) and in the Alps to a changing climate, with the use of the 40-year long satellite archive. We first developped a semi-automated processing chain to derive annual ice flow velocities from feature-tracking of satellite images. The chain takes advantage of the redundancy in the archive to obtain more spatially complete and robust velocity fields and to statistically estimate the uncertainty. Application to the Landsat archive leads to the determination of an unprecedented velocity field for the entire PKH region (~92 000 km2) for the period 1998-2014 and over the Alps (2 000 km2, period 1999-2014) with a coverage of 60-80 % and a mean uncertainty of 4 m/yr.. Flow velocities have been derived less systematically for the period 1972-1998 over the PKH. Secondly, the analysis of velocity changes show a slow-down of the glaciers for most of the 2 regions. The velocity changes are spatially contrasted and coherent with the patterns of elevation changes. In particular, glaciers in the Karakoram and West Kunlun that are stable or advancing show also a clear speed-up, whereas regions where thinning is the most important (Western Himalaya, Nyenchen Tangla, Alps) show the most important slow-down. The observed velocity changes is thus primarily determined by a climatic signal.
|
10 |
Impact of improved basal and surface boundary conditions on the mass balance of the Sr Rondane Mountains glacial system, Dronning Maud Land, AntarcticaCallens, Denis 06 November 2014 (has links)
Mass changes of polar ice sheets have an important societal impact, because they affect global sea level. Estimating the current mass budget of ice sheets is equivalent to determining the balance between the surface mass gain through precipitation and the outflow across the grounding line. In Antarctica, the latter is mainly governed by oceanic processes and outlet glacier dynamics.<p>In this thesis, we assess the mass balance of a part of eastern DronningMaud Land via an input/output method. Input is given by recent surface accumulation estimations of the whole drainage basin. The outflow at the grounding line is determined from the radar data of a recent airborne survey and satellite-based velocities using a flow model of combined plug flow and simple shear. We estimate the regional mass balance in this area to be between 1.88±8.50 and 3.78±3.32 Gt a−1 depending on the surface mass balance (SMB) dataset used. This study also reveals that the plug flow assumption is acceptable at the grounding line of ice streams.<p>The mass balance of drainage basins is governed by the dynamics of their outlet glaciers and more specifically the flow conditions at the grounding line. Thanks to an airborne radar survey we define the bed properties close to the grounding line of the West Ragnhild Glacier (WRG) in the Sør Rondane Mountains. Geometry and reflectivity analyses reveal that the bed of the last 65 km upstream of the grounding line is sediment covered and saturated with water. This setting promotes the dominance of basal motion leading to a change in the flow regime: in the interior flow is governed by internal deformation while its relative importance decreases to become driven by basal sliding.<p>Subsequently we present the results of the reconstruction of the SMB across an ice rise through radar data and inverse modelling. The analysis demonstrates that atmospheric circulation was stable during the last millennium. Ice rises induce an orographic uplift of the atmospheric flow and therefore influence the pattern of the SMB across them, resulting in an asymmetric SMB distribution. Since the geometry of the internal reflection horizons observed in radar data depends on the SMB pattern, the asymmetry observed in radar layers reveals the trajectories of air masses at the time of deposit. We present an original and robust method to quantify this SMB distribution. Combining shallow and deep radar layers, SMB across Derwael Ice Rise is reconstructed. Two methods are employed as a function of the depth of the layers: i.e. the shallow layer approximation for the surface radar layers and an optimization technique based on an ice flow model for the deeper ones. Both methods produce similar results. We identify a difference in SMB magnitude of 2.5 between the flanks and the ice rise divide, as well as a shift of ≈4 km between the SMB maximum and the crest. Across the ice rise, SMB exhibits a very large variability, ranging from 0.3 to 0.9 mw.e. a−1. This anomaly is robust in time.<p>Finally we draw a comprehensive description of the Sør Rondane Mountains sector. The glacial system is close to the equilibrium and seems stable but evidences suggest that it is a fragile equilibrium. The proximity of the open ocean certainly favours the interaction between warm water and the ice shelf cavity conducting to potential important melting. The thinning associated with this melting can detach the ice shelf from pinning points. This will reduce the buttressing from the ice shelf, outlet glaciers will accelerate and mass transfer toward the ocean will increase. Therefore, the future of Antarctic Ice Sheet directly depends on the changes affecting its boundaries and assessing the sensitivity of the ice sheets is essential to quantify and anticipate the future variation of mass balance. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.039 seconds