• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Highway To Hell: Can a bubble barrier guide descending salmonid kelt to safety? / Kan en bubbelbarriär avleda nedvandrandesalmonidkelt till säkerhet?

Nordin, Jonathan January 2020 (has links)
Loss of connectivity in riverine systems due to construction of hydropower dams has resulted in a worldwide decline of anadromous salmonid species such as Atlantic salmon (Salmo salar L.) and sea trout (Salmo trutta L.). The future of these species depend on the presence of available spawning habitat in freshwater river systems. Modern research and mitigation efforts mainly focus on ensuring a successful upstream passage past dams e.g. fish ladders. Atlantic salmon and sea trout are iteroparous, and are thus able to spawn repeatedly during their lifetime. Individuals surviving upstream migration and spawning generally face a hazardous journey back to their marine feeding grounds. In this large scale natural field study I evaluate the possibility of using a bubble barrier as a non-physical structure to guide downstream migrating kelt past the turbines at a large hydropower station in northern Sweden. Results from this study clearly show that kelt effectively can be diverted using a bubble barrier in daylight conditions with a mean water velocity of 1.1 m s-1 (p=0,01). From a fishway managers perspective, increasing survival of salmonid kelt is a substantial step towards achieving a viable population with increased numbers of repeat spawners and large individuals. This study presents new results in a sparsely explored subject; the diversion of post-spawn salmonid migrants using non-physical barriers.

Page generated in 0.0506 seconds