• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Algorithm for Image Quality Assessment

Ivkovic, Goran 10 July 2003 (has links)
Image quality measures are used to optimize image processing algorithms and evaluate their performances. The only reliable way to assess image quality is subjective evaluation by human observers, where the mean value of their scores is used as the quality measure. This is known as mean opinion score (MOS). In addition to this measure there are various objective (quantitative) measures. Most widely used quantitative measures are: mean squared error (MSE), peak signal to noise ratio (PSNR) and signal to noise ratio (SNR). Since these simple measures do not always produce results that are in agreement with subjective evaluation, many other quality measures have been proposed. They are mostly various modifications of MSE, which try to take into account some properties of human visual system (HVS) such as nonlinear character of brightness perception, contrast sensitivity function (CSF) and texture masking. In these approaches quality measure is computed as MSE of input image intensities or frequency domain coefficients obtained after some transform (DFT, DCT etc.), weighted by some coefficients which account for the mentioned properties of HVS. These measures have some advantages over MSE, but their ability to predict image quality is still limited. A different approach is presented here. Quality measure proposed here uses simple model of HVS, which has one user-defined parameter, whose value depends on the reference image. This quality measure is based on the average value of locally computed correlation coefficients. This takes into account structural similarity between original and distorted images, which cannot be measured by MSE or any kind of weighted MSE. The proposed measure also differentiates between random and signal dependant distortion, because these two have different effect on human observer. This is achieved by computing the average correlation coefficient between reference image and error image. Performance of the proposed quality measure is illustrated by examples involving images with different types of degradation.
2

An algorithm for image quality assessment [electronic resource] / by Goran Ivkovic.

Ivkovic, Goran. January 2003 (has links)
Title from PDF of title page. / Document formatted into pages; contains 82 pages. / Thesis (M.S.E.E.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: Image quality measures are used to optimize image processing algorithms and evaluate their performances. The only reliable way to assess image quality is subjective evaluation by human observers, where the mean value of their scores is used as the quality measure. This is known as mean opinion score (MOS). In addition to this measure there are various objective (quantitative) measures. Most widely used quantitative measures are: mean squared error (MSE), peak signal to noise ratio (PSNR) and signal to noise ratio (SNR). Since these simple measures do not always produce results that are in agreement with subjective evaluation, many other quality measures have been proposed. They are mostly various modifications of MSE, which try to take into account some properties of human visual system (HVS) such as nonlinear character of brightness perception, contrast sensitivity function (CSF) and texture masking. / ABSTRACT: In these approaches quality measure is computed as MSE of input image intensities or frequency domain coefficients obtained after some transform (DFT, DCT etc.), weighted by some coefficients which account for the mentioned properties of HVS. These measures have some advantages over MSE, but their ability to predict image quality is still limited. A different approach is presented here. Quality measure proposed here uses simple model of HVS, which has one user-defined parameter, whose value depends on the reference image. This quality measure is based on the average value of locally computed correlation coefficients. This takes into account structural similarity between original and distorted images, which cannot be measured by MSE or any kind of weighted MSE. The proposed measure also differentiates between random and signal dependant distortion, because these two have different effect on human observer. / ABSTRACT: This is achieved by computing the average correlation coefficient between reference image and error image. Performance of the proposed quality measure is illustrated by examples involving images with different types of degradation. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.

Page generated in 0.3623 seconds