• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Alkylation of Benzene by Long-Chain Alkenes on Immobilized Phosphotungstic Acid

Kuvayskaya, Anastasia, Mohseni, Reza, Vasiliev, Aleksey 01 January 2022 (has links)
Linear alkylbenzenes (LAB) are semi-products in the manufacture of linear alkylbenzene sulfonate surfactants that are active ingredients of various detergents. The use of traditional soluble acids (e.g. hydrofluoric acid or aluminum chloride) as catalysts for production of LAB results in the formation of large amounts of acidic toxic wastes. In this work, an efficient heterogeneous catalyst containing immobilized phosphotungstic acid (PTA) was synthesized and tested in the alkylation of benzene by higher alkenes. Sol–gel synthesis of silica gel from tetraethyl orthosilicate and PTA, as precursors, produced a mesoporous material containing covalently embedded PTA clusters. Obtained superacidic catalyst demonstrated high catalytic activity in liquid-phase alkylation of benzene by higher alkenes. Conversion of alkenes to corresponding phenylalkanes on this catalyst was significantly higher than on pure PTA. Covalent embedding of catalytically active HPA clusters prevented their leaching from the catalyst surface, which enabled its excellent catalytic properties.
2

Design, synthesis, and optimization of recoverable and recyclable silica-immobilized atom transfer radical polymerization catalysts

Nguyen, Joseph Vu 08 March 2005 (has links)
Despite the growing interest in heterogeneous polymerization catalysis, the majority of the polymerization catalysts used industrially are single-use entities that are left in the polymer product. Recoverable and recyclable polymerization catalysts have not reached the industrial utility of single-use catalysts because the catalyst and product separation have not become economical. The successful development of recyclable transition metal polymerization catalysts must take a rational design approach, hence academic and industrial researchers need to further expand the fundamental science and engineering of recyclable polymerization catalysis to gain an understanding of critical parameters that allow for the design of economically viable, recoverable solid polymerization catalysts. Unfortunately, the rapid development of Atom Transfer Radical Polymerization over the past 10 years has not resulted in its wide spread industrial practice. Numerous reports regarding the immobilization of transition metal ATRP catalysts, in attempts to increase its applicability, have extended the fundamentals of recyclable polymerization catalysis. However, for industrial viability, more research is required in the area of how the catalyst complex immobilization methodology and support structure affect the catalyst polymerization performance, regeneration, and recyclability. A comprehensive rational catalyst design approach of silica-immobilized ATRP catalyst was undertaken to answer these questions and are discussed here.
3

Synthesis, characterization, and evaluation of silica and polymer supported catalysts for the production of fine chemicals

Shiels, Rebecca Anne 05 May 2008 (has links)
Catalysis is an important field of study in chemical engineering and chemistry due to its application in a vast number of chemical transformations. Traditionally, catalysts have been developed as homogeneous molecular species or as heterogeneous insoluble materials. While homogeneous catalysts are typically very active and selective, they are difficult to recover. Conversely, heterogeneous catalysts are easy to recover and reuse, but they generally are less selective. To address these issues, the immobilization of homogeneous catalyst analogs onto solid supports has been a subject of research for the past few decades. Nonetheless, the effects of immobilization are still not completely predictable, and so continued effort is required to develop new immobilized catalysts as well as to develop a better understanding of how different parameters affect catalytic behavior. This dissertation presents the synthesis, characterization, and evaluation of new immobilized catalysts for different applications. First, a solid base catalyst supported on silica was developed and studied in the synthesis of cyclic carbonates from epoxides and carbon dioxide. Next, polymer and silica supported vanadium Schiff base catalysts were developed and evaluated for use in the oxidative kinetic resolution of alpha-hydroxy esters, an enantioselective reaction. Lastly, salen catalyst analogs with amine reactive functional groups were synthesized and characterized for grafting onto aminosilicas with different degrees of amine group isolation. The grafted catalysts were then tested to determine how catalyst spacing on the surface affects their behavior. Throughout the presentation of these results, comparisons are made amongst the new supported catalysts and relevant existing catalysts to discern general trends which could be applied to a wider range of immobilized catalysts. Finally, research opportunities for further improvements in these areas are suggested.
4

Designing immobilized catalysts for chemical transformations: new platforms to tune the accessibility of active sites

Long, Wei 03 July 2012 (has links)
Chemical catalysts are divided into two traditional categories: homogeneous and heterogeneous catalysts. Although homogeneous (molecular) catalysts tend to have high activity and selectivity, their wide application is hampered by the difficulties in catalyst separation. In contrast, the vast majority of industrial scale catalysts are heterogeneous catalysts based on solid materials. Immobilized catalysts, combining the advantages of homogeneous and heterogeneous catalysts, have developed into an important field in catalysis research. This dissertation presents synthesis, characterization and evaluation of several novel immobilized catalysts. In the first part, MNP supported aluminum isoproxide was developed for ROP of Є-caprolactone to achieve facile magnetic separation of catalysts from polymerization system and reduce toxic metal residues in the poly(caprolactone) product. Chapter 3 presents a silica coated MNP supported DMAP catalyst that was synthesized and displayed good activity and regio-selectivity in epoxide ring opening reactions. In Chapter 4, hybrid sulfonic acid catalysts based on polymer brush materials have been developed. The unique polymer brush architecture permits high catalyst loadings as well as easy accessibility of the active sites to be achieved in this catalytic system. In Chapter 5, aminopolymer-silica composite supported Pd catalysts with good activity and selectivity were developed for the selective hydrogenation of alkynes. In this case, the aminopolymer composite works as a stabilizer for palladium nanoparticles, as well as a modifier to tune the catalyst selectivity. All in all, the general theme of the thesis is developing new immobilized catalysts with improved activity/selectivity as well as easy separation via rational catalyst design.

Page generated in 0.0541 seconds