• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 14
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Full Frequency-Dependent Cable Model for the Calculation of Fast Transients

Hoshmeh, Abdullah, Schmidt, Uwe 31 August 2017 (has links) (PDF)
The calculation of frequency-dependent cable parameters is essential for simulations of transient phenomena in electrical power systems. The simulation of transients is more complicated than the calculation of currents and voltages in the nominal frequency range. The model has to represent the frequency dependency and the wave propagation behavior of cable lines. The introduced model combines an improved subconductor method for the determination of the frequency-dependent parameters and a PI section wave propagation model. The subconductor method considers the skin and proximity effect in all conductors for frequency ranges up to few megahertz. The subconductor method method yields accurate results. The wave propagation part of the cable model is based on a cascaded PI section model. A modal transformation technique has been used for the calculation in the time domain. The frequency-dependent elements of the related modal transformation matrices have been fitted with rational functions. The frequency dependence of cable parameters has been reproduced using a vector fitting algorithm and has been implemented into an resistor-inductor-capacitor network (RLC network) for each PI section. The proposed full model has been validated with measured data.
12

EXPERIMENTAL VERIFICATION OF A GENERALIZED CONTROL METHOD FOR CONSTANT SWITCHING FREQUENCY THREE PHASE PWM BOOST RECTIFIER UNDER EXTREMELY UNBALANCED OPERATING CONDITIONS

Krishnan, Divin Sujatha January 2017 (has links)
No description available.
13

A Full Frequency-Dependent Cable Model for the Calculation of Fast Transients

Hoshmeh, Abdullah, Schmidt, Uwe 31 August 2017 (has links)
The calculation of frequency-dependent cable parameters is essential for simulations of transient phenomena in electrical power systems. The simulation of transients is more complicated than the calculation of currents and voltages in the nominal frequency range. The model has to represent the frequency dependency and the wave propagation behavior of cable lines. The introduced model combines an improved subconductor method for the determination of the frequency-dependent parameters and a PI section wave propagation model. The subconductor method considers the skin and proximity effect in all conductors for frequency ranges up to few megahertz. The subconductor method method yields accurate results. The wave propagation part of the cable model is based on a cascaded PI section model. A modal transformation technique has been used for the calculation in the time domain. The frequency-dependent elements of the related modal transformation matrices have been fitted with rational functions. The frequency dependence of cable parameters has been reproduced using a vector fitting algorithm and has been implemented into an resistor-inductor-capacitor network (RLC network) for each PI section. The proposed full model has been validated with measured data.
14

Diferenční a pseudodiferenční kmitočtové filtry / Differential and pseudo-differential frequency filters

Sládok, Ondřej January 2016 (has links)
This thesis deals with fully differential and pseudo-differential frequency filters. Significant emphasis is placed on the characteristics of common-mode signal. Further, the text deals with the design issue of fully-differential structure and transformation of non-differential to pseudo-differential structures. In the thesis one non-differential structure, one fully-differential and three pseudo-differential structures are proposed, one of them working in current mode. The thesis also describes the analysis from the perspective of non-ideal properties of the active element of two circuit solutions, which is trying to find the optimal solution. In each case, functionality of new solutions is verified by simulations and in several cases also by experimental measurement.

Page generated in 0.0406 seconds