Spelling suggestions: "subject:"impregnation""
21 |
Polypropylene-based wood-plastic composites reinforced with nanoclayYeh, Shu-Kai. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains xiii,164 p. : ill. Includes abstract. Includes bibliographical references (p. 133-148).
|
22 |
Structural Design of Hollow Extruded WPC Sheet PilingKahl, Melissa January 2006 (has links) (PDF)
No description available.
|
23 |
Development of wood flour-recycled polymer composite panels as building materials : a thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Chemical and Process Engineering in the University of Canterbury /Adhikary, Kamal Babu. January 2008 (has links)
Thesis (Ph. D.)--University of Canterbury, 2008. / Typescript (photocopy). Includes bibliographical references. Also available via the World Wide Web.
|
24 |
Effects of Repeated Wet-Dry Cycles on Compressive Strength of Fly-Ash Based Recycled Aggregate Geopolymer Concrete (RAGC)Unknown Date (has links)
Geopolymer concrete (GC) is a sustainable construction material and a great
alternative to regular concrete. GC is a zero-cement material made from a combination of
aluminate, silicate and an activator to produce a binder-like substance.
This investigation focused on the effects of wet and dry cycles on the strength and
durability of fly ash-based recycled aggregate geopolymer concrete (RAGC). The wet-dry
cycles were performed approximately according to ASTM D559 standards.
RAGC specimens with nearly 70% recycled materials (recycled aggregate and fly
ash) achieved a compressive strength of approximately 3600 psi, after 7 days of heat curing
at 60ºC. Although the recycled aggregate is prone to high water absorption, the
compressive strength decreased by only 4% after exposure to 21 wet-dry cycles, compared
to control specimens that were not exposed to the same conditions. Accordingly, the RAGC
material developed in this study can be considered as a promising environmentally friendly
alternative to cement-based regular concrete. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
|
25 |
Superplasticizers in concreteKapanpour, Mehrdad January 2010 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
|
26 |
Impregnated Cobalt, Nickel, Copper and Palladium Oxides on Magnetite: Nanocatalysts for Organic SynthesisPérez Galera, Juana María 27 May 2016 (has links)
In this manuscript, the application of different nanocatalysts derived from metal oxides impregnated on the surface of the magnetite in different reaction of general interest in Organic Chemistry is described. In the First Chapter, a cobalt derived catalyst was used to study the hydroacylation reaction of azodicarboxylates with aldehydes. In the Second Chapter, a catalyst derived from copper was used to perform different reactions, including homocoupling of terminal alkynes and the subsequent hydration reaction to obtain the corresponding 2,5-disubstituted benzofurans, the reaction of alcohols and amines (or nitroarenes) to obtain the corresponding aromatic imines, the cross-dehydrogenative coupling reaction of N-substituted tetrahydroisoquinolines using deep eutectic solvents and air as final oxidant. Finally, the formation of benzofurans from aldehydes and alkynes through a tandem coupling-allenylation-cyclization process has been performed. In the Third Chapter, a bimetallic catalyst derived from nickel and copper was used to study the multicomponent reaction between benzyl bromides, sodium azide and alkynes to obtain the corresponding triazoles. In the Fourth Chapter, a catalyst derived from palladium was used in the direct arylation of heterocycles using iodonium salts. Also the synthesis of 4-aryl coumarins through the Heck arylation reaction and subsequent cyclization using the same catalyst is described. In the last Chapter, the use of different eutectic mixtures were studied as alternative media to perform in a single vessel the cyclation reaction of N-hydroxy imidoyl chlorides and alkynes, without any type of catalyst under oxidizing conditions.
|
27 |
Early age performance of latex-modified concrete bridge deck overlaysSujjavanich, Suvimol 27 November 1996 (has links)
Environmental factors and physical properties of latex modified concrete (LMC)
are hypothesized to contribute to early age cracking in bridge deck overlays. Cracking
permits the ingress of moisture and aggressive solutions into the substrate and may
contribute to other subsequent distresses. Understanding the material properties and
mechanisms involved is necessary to minimize these distresses.
This research consisted of a two part study: first, the development of LMC
strength and fracture properties at ages ranging from 5 hours to 28 days was studied, and
secondly, the effects of the environment on LMC distresses were modelled.
Environmental conditions: temperature, solar energy, and wind speed were determined
from weather records. A fracture mechanics based model, the Fictitious Crack Model
(FCM), incorporating finite element analyses and superposition techniques was employed
with material properties from the first part of study on LMC performance. Different
bilinear strain softening diagrams were used to predict fracture performance at different
ages. The predictions agreed well with the test data. The impacts of temperature
differentials on crack development were studied. The shrinkage effect was also indirectly
incorporated through the temperature analysis.
The material properties study indicated significant changes in strength, deformability
and fracture properties, particularly during the early age. The developments differ slightly from
conventional concrete. Test results indicated a significant improvement in reducing and
bridging microcracks, especially in the prepeak-load region. Fracture toughness and
deformability increased significantly with time. Fracture energy varied from 2.3 to 133.1 N/m,
depending on age, and to some degree, on notch depth ratio.
In the second stage, the FCM provided a reasonable prediction for crack initiation
and propagation when only temperature effects are of concern. Age, surface conditions
and structural restraint strongly affect crack resistance of the overlays. Only slight effects
were observed from the overlay thickness in the study range (51-76 mm). Shallow preexisting
cracks possibly reduce the crack resistance of the overlay about 30 percent. A
prolonged moist cure for 48 hours after placing is suggested to reduce the risk of
cracking. With available environmental information, it is possible to develop guidelines for
appropriate environmental conditions for LMC bridge deck construction to minimize the
risk of early age cracking. / Graduation date: 1997
|
28 |
Seismic performance of self-centering frames composed of precast post-tensioned concrete encased in FRP tubesSha'lan, Ahmad Abdulkareem Saker. January 2009 (has links) (PDF)
Thesis (M.S. in civil engineering)--Washington State University, December 2009. / Title from PDF title page (viewed on Feb. 4, 2010). "Department of Civil Engineering." Includes bibliographical references (p. 134-135).
|
29 |
Solid-gel interactions in geopolymersLee, William K. January 2002 (has links) (PDF)
This is partly because the requirements for such an ultimate material change with people’s perception about its properties as well as its environmental impact. Thus, the once-believed ultimate Portland cement binder is now becoming unacceptable for a number of reasons including poor durability as well as severe environmental impact during production. Thus, an improved mineral binder is required by modern society to serve the same purposes as the existing Portland cement binder, as well as to reduce the current environmental impact caused by Portland cement production. / Geopolymerisation is such a ‘green’ technology capable of turning both natural ‘virginal’ aluminosilicates and industrial aluminosilicate wastes, such as fly ash and blast furnace slag, into mechanically strong and chemically durable construction materials. However, the source materials for geopolymer synthesis are less reactive than Portland cement clinkers and the chemical compositions of these source materials can vary significantly. Consequently, product quality control is a major engineering challenge for the commercialisation of geopolymers. / This thesis is therefore devoted to the mechanistic understanding of the interfacial chemical interactions between a number of natural and industrial aluminosilicates and the various activating solutions, which govern the reactivity of the aluminosilicate source materials. The effects of activating solution alkalinity, soluble silicate dosage and anionic contamination on the reactivity of the aluminosilicate source materials to produce geopolymeric binders, as well as their bonding properties to natural siliceous aggregates for concrete making, are examined. In particular, a new set of novel ‘realistic’ reaction models has been developed for such purposes. These reaction models have been further utilised to develop a novel analytical procedure, which is capable of studying geopolymerisation on ‘real’ geopolymers in situ and in real time. This novel procedure is invaluable for the total understanding of geopolymerisation, which is in turn vital for effective geopolymer mix designs.
|
30 |
Solid-gel interactions in geopolymers /Lee, William K. January 2002 (has links)
Thesis (Ph.D.)--University of Melbourne, Dept. of Chemical Engineering, 2003. / Typescript (photocopy). Includes bibliographical references.
|
Page generated in 0.0561 seconds