• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 50
  • 21
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 159
  • 105
  • 88
  • 54
  • 54
  • 24
  • 24
  • 23
  • 21
  • 21
  • 21
  • 17
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Molecular imprinting of small, poorly functionalised organic compounds

Kueh, Alona Swee Hua January 2008 (has links)
Molecularly imprinted polymers (MIPs) have been compared to natural antibodies in that they can specifically bind target compounds in a similar way that antibodies specifically bind to an antigen. The attraction of the MIPs technology is the ease of creating binding elements which are relatively cheap compared with the process of isolating natural antibodies. In this research monoterpenes, such as α-terpineol, were chosen to be the model compounds for investigating the molecular imprinting of small, poorly functionalised organic compounds. The conventional non-covalent approach was mainly used to synthesise these MIPs, but the sacrificial-spacer semi-covalent approach was also investigated. A less widely used method, porogen-imprinting - a variant of non-covalent imprinting - was adapted for α-terpineol. The latter novel terpene MIP appeared to specifically bind α-terpineol, by hydrogen bonding, so the polymer was characterised in detail. The main parameters which were altered for preparing non-covalent MIPs included the template (α-terpineol, (-)-menthol or trans-terpin); the functional monomer (methacrylic acid, 2-hydroxyethyl methacrylate, bilirubin and phenol [for the semi-covalent MIP]); the cross-linking monomer (ethylene glycol dimethacrylate, divinylbenzene and trimethylolpropane trimethacrylate); and also the polymerisation method (block or precipitation polymerisation). The binding specificity and cross-reactivity for all the polymers were tested using a liquid batch-binding setup. The batch-binding setup required the detection of analyte that was not bound in order to calculate by difference the fraction of analyte bound to the polymer. Initially the terpenes were to be detected by a colorimetric method; however attempts to make the method sensitive and reliable were not successful. In comparison, gas chromatography was more reliable for the detection of terpenes and was used for the experiments presented in this thesis. 1H-NMR studies of the interaction between α-terpineol and acetic acid (as a non-polymerisable analogue of methacrylic acid) were investigated as a basis for understanding the binding to the carboxyl functional group moiety employed in many of the non-covalent MIPs that were made. The interaction between (-)-menthol and phenol was also investigated because the phenol moiety was employed in the semi-covalent MIP. Only selected MIPs, which appeared to specifically bind the template, were physically characterised. This included optimising the batch-binding parameters, scanning electron microscopy imaging, surface area and pore radius analysis and in some cases Fourier transform-infrared spectroscopy of the polymers.
42

Advances in Separation Science : . Molecular Imprinting: Development of Spherical Beads and Optimization of the Formulation by Chemometrics.

Kempe, Henrik January 2007 (has links)
<p>An intrinsic mathematical model for simulation of fixed bed chromatography was demonstrated and compared to more simplified models. The former model was shown to describe variations in the physical, kinetic, and operating parameters better than the latter ones. This resulted in a more reliable prediction of the chromatography process as well as a better understanding of the underlying mechanisms responsible for the separation. A procedure based on frontal liquid chromatography and a detailed mathematical model was developed to determine effective diffusion coefficients of proteins in chromatographic gels. The procedure was applied to lysozyme, bovine serum albumin, and immunoglobulin γ in Sepharose™ CL-4B. The effective diffusion coefficients were comparable to those determined by other methods.</p><p>Molecularly imprinted polymers (MIPs) are traditionally prepared as irregular particles by grinding monoliths. In this thesis, a suspension polymerization providing spherical MIP beads is presented. Droplets of pre-polymerization solution were formed in mineral oil with no need of stabilizers by vigorous stirring. The droplets were transformed into solid spherical beads by free-radical polymerization. The method is fast and the performance of the beads comparable to that of irregular particles. Optimizing a MIP formulation requires a large number of experiments since the possible combinations of the components are huge. To facilitate the optimization, chemometrics was applied. The amounts of monomer, cross-linker, and porogen were chosen as the factors in the model. Multivariate data analysis indicated the influence of the factors on the binding and an optimized MIP composition was identified. The combined use of the suspension polymerization method to produce spherical beads with the application of chemometrics was shown in this thesis to drastically reduce the number of experiments and the time needed to design and optimize a new MIP.</p>
43

Advances in Separation Science : . Molecular Imprinting: Development of Spherical Beads and Optimization of the Formulation by Chemometrics.

Kempe, Henrik January 2007 (has links)
An intrinsic mathematical model for simulation of fixed bed chromatography was demonstrated and compared to more simplified models. The former model was shown to describe variations in the physical, kinetic, and operating parameters better than the latter ones. This resulted in a more reliable prediction of the chromatography process as well as a better understanding of the underlying mechanisms responsible for the separation. A procedure based on frontal liquid chromatography and a detailed mathematical model was developed to determine effective diffusion coefficients of proteins in chromatographic gels. The procedure was applied to lysozyme, bovine serum albumin, and immunoglobulin γ in Sepharose™ CL-4B. The effective diffusion coefficients were comparable to those determined by other methods. Molecularly imprinted polymers (MIPs) are traditionally prepared as irregular particles by grinding monoliths. In this thesis, a suspension polymerization providing spherical MIP beads is presented. Droplets of pre-polymerization solution were formed in mineral oil with no need of stabilizers by vigorous stirring. The droplets were transformed into solid spherical beads by free-radical polymerization. The method is fast and the performance of the beads comparable to that of irregular particles. Optimizing a MIP formulation requires a large number of experiments since the possible combinations of the components are huge. To facilitate the optimization, chemometrics was applied. The amounts of monomer, cross-linker, and porogen were chosen as the factors in the model. Multivariate data analysis indicated the influence of the factors on the binding and an optimized MIP composition was identified. The combined use of the suspension polymerization method to produce spherical beads with the application of chemometrics was shown in this thesis to drastically reduce the number of experiments and the time needed to design and optimize a new MIP.
44

Sample preparation of 8-hydroxy-2’-deoxyguanosine with solid phase extraction methodology based on molecular imprinting polymers and conventional silica based phases

Bergman, Nina January 2011 (has links)
The aim of this study was to develop methods for sample preparation for 8-OHdG in blood plasma samples with different solid phase extraction techniques using HPLC with an elec- trochemical detector. The solid phase extraction cartridges used were Chromabond® C18, Oasis® MAX, and three types of SupelMIPTM cartridges for chloramphenicol, riboflavin, and nitroimidazoles. The SupelMIPTM cartridges are based on molecularly imprinted polymers- technique. The separation of 8-OHdG in samples extracted from blood plasma was carried out with a Thermo Quest Hypersil Division ODS column (250 mm × 4 mm, 3μm I.D.) and methanol:buffer (10:90, v/v) as mobile phase. Recovery and selectivity was studied for the different solid phase extraction methods. The highest recovery was obtained using the Chromabond C18 cartridge with a recovery of 92%, and CV coefficient 9.5% (n = 4). 8-OHdG could not be extracted on MIP-cartridges for chloramphenicol or riboflavin, but was retained on MIP columns for nitroimidazoles, and the highest recovery was 49%.
45

Novel insights into macromolecularly imprinted polymers for the specific recognition of protein biomarkers

Kryscio, David Richard 04 October 2012 (has links)
Bulk imprinted polymers were synthesized using traditional small molecular weight imprinting techniques for the recognition of bovine serum albumin (BSA). Reproducibility and capacity concerns prompted the use of circular dichroism to investigate the potential effects that conditions commonly employed have on the structure of the protein prior to polymerization. These studies clearly showed a substantial change in the secondary structure of three common model protein templates when in the presence of various monomers and crosslinkers. Molecular docking was used to further examine the interactions taking place at the molecular level. Docking simulations revealed that significant amounts of non-covalent interactions are occurring between the amino acid side chains and ligands; although, the interactions taking place amongst the analyte and polypeptide backbone are responsible for the experimentally observed conformational change. The computational studies also showed that several of the ligands preferentially ‘docked’ to the same amino acids in the protein, indicating that if multiple monomers are employed, this competition for similar binding sites will potentially result in non-specific recognition. These findings are important as they offer insight into the fundamental reasons why recognition of macromolecular templates has proven difficult as well as provide guidance for future success in the field. Using this information, novel surface imprinted polymers were synthesized via a facile technique for the specific recognition of BSA. Thin films based on 2-(dimethylamino)ethyl methacrylate (DMAEMA) as the functional monomer and varying amounts of either N,N’ methylenebisacrylamide (MBA) or poly(ethylene glycol) (400) dimethacrylate (PEG400DMA) as crosslinker were synthesized via UV free-radical polymerization. A clear and reproducible increase in recognition of the template was demonstrated for these systems as 1.6-2.5 times more BSA was recognized by the MIP sample relative to the control polymers. Additionally, these polymers exhibited specific recognition of the template relative to similar competitor proteins with up to 2.9 times more BSA adsorbed than either glucose oxidase or bovine hemoglobin. These synthetic antibody mimics hold significant promise as the next generation of robust recognition elements in a wide range of bioassay and biosensor applications. / text
46

Towards more selective sorbents for extraction of drugs and biomarkers from biological fluids using molecularly imprinted polymers

Moein, Mohammad Mahdi January 2014 (has links)
Sample preparation has a critical role as a first step in analytical processes, especially in bioanalysis and environmental analysis. A good sample preparation technique should be robust and stable, regardless of the sample matrix. The aim of this thesis is to design and synthesize molecularly imprinted polymers that can be used in various sample preparation techniques, such as on-line MEPS, on-line SPE and on-line monolithic pre-columns used for the extraction of drugs, hormones, and cancer biomarkers from human plasma and urine samples. Additional aim was to provide full automation, on-line coupling, short sample preparation time and high-throughput. In this thesis MIP in MEPS was used on-line with liquid chromatography-tandem mass spectrometry (LC/MS/MS) for the determination of sarcosine in human urine and plasma samples. The method was fully automated and the packed sorbent could be used for about hundred extractions. In additional work a coated needle with MIP-Sol-Gel as thin layer was prepared and used for the microextraction of bilirubin from human plasma and urine. Small sample volumes could be handled and the validation of the method showed that the method was robust and selective. In a further work MIP-SPE on-line with HPLC was used for the extraction and determination of dextromethorphan in human plasma samples. MIP-SPE showed a good selectivity and high recovery (87% - 92%). On-line MIP monolithic pre-column was prepared and used in a coupled system for the extraction of tramadol in human plasma and urine samples. The MIP monolithic pre-column showed good selectivity and high extraction recovery was obtained (91-96%). The extraction and analysis of human insulin in plasma and pharmaceutical formulation solutions were carried out using MIP-SPE on-line with HPLC. The validation of the method showed that the method was accurate and robust. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 5: Submitted.</p>
47

Molecularly imprinted polymer sensors for the detection of phosphate in agriculture

Storer, Christopher January 2017 (has links)
Molecularly imprinted polymers (MIPs) are biomimetic sensing elements that combine the accuracy and highly specific binding affinity of a biosensor, with the robustness and reusability associated with artificial electrochemical sensors. This thesis investigates the application of a MIP sensor to address the challenge of phosphate detection in precision agriculture. Traditional chemical sensing approaches using portable electrochemical sensors display a significant cross-interference between inorganic phosphate and other nutrient ions. This is due to the low position of phosphate in the Hofmeister Selectivity Series for anions, its high electronegativity and its pH dependent structure, resulting in a molecule that is very difficult to detect. To address this challenge, a sensor was created by spin coating a phosphate selective MIP onto a substrate containing a series of electrodes. These electrode devices allowed for electrical measurements to be taken using an inductance, capacitance and resistance (LCR) testing station, and to observe the change in the materials dielectric constant as the binding sites become occupied by the target analyte. The devices underwent several design reiterations to produce an optimised setup consisting of 100 interdigitated chrome electrodes with a width of 1 μm and a separation distance of 1 μm on a quartz substrate. The final electrode design was used to carry out a nutrient cross-interference study across several polymer permutations. The purpose of this was to develop an optimised MIP formulation for binding specifically to inorganic phosphate ions. From this study, an optimal phosphate selective MIP was identified, based upon a binding site constructed from methacrylic acid around a diphenyl phosphate template molecule. During capacitance measurements, this MIP formulation demonstrated a clear preferential response to phosphate (1610 pF) over the average capacitance results observed following exposure to the competing nitrate (1286 pF) and sulphate (1212 pF) nutrients tested in the cross-interference study.
48

Estratégia no delineamento de fotocatalisadores seletivos via impressão molecular

Escobar, Cícero Coelho de January 2016 (has links)
A fotocatálise heterogênea é um processo que apresenta baixa seletividade de degradação. Nesse sentido, a síntese de materiais dotados de impressão molecular (IM) deve ajudar a contornar este problema. Os fotocatalisadores dotados de IM foram sintetizados de acordo com duas classes: uma inorgância (via diferentes rotas sol-gel e TEOS como percursor de sílica) e outra orgânica (via impressão não-covalente por precipitação e ácido metacrílico como monômero). No caso da primeira, a impressão molecular foi investigada através do uso de corante (rodamina B) e diferentes fármacos como template (substrato molde). No caso da matriz orgânica, o fármaco diclofenaco foi usado como molécula template. Os materiais foram caracterizados por análises texturais, estruturais e morfológicas. Com respeito à matriz à base de sílica, os sistemas com maiores valores de área específica foram observados pela rota ácida. Como efeito da rota, foi observado que a rota ácida apresentou um fator de seletividade 47% maior que a rota não-hidrolítica em testes de adsorção seletiva. Os resultados obtidos por análise de isotermas também convergem no sentido de revelarem que a rota ácida apresentou a maior capacidade de adsorção (997,9 mg/g) dentre as diferentes rotas de síntese pelo método sol-gel. Nos ensaios de fotocatálise (rodamina como template), foi conseguido um aumento de seletividade e competitividade na fotodegradação da rodamina de até 187% e 290%, respectivamente, comparado ao P25 (amostra comercial de TiO2). Quanto ao uso de fármacos como template em matriz inorgânica, os fotocatalisadores com impressão molecular obtiveram um aumento na adsorção e fotodegradação de até 751 e 427%, respectivamente, em comparação ao P25. Os materiais baseados em matriz orgânica também apresentaram seletividade em comparação ao P25. O valor médio do coeficiente de seletividade (estimado a partir da degradação de moléculas não-alvo, a fluxetina e o paracetamol) foi estimado em 2,8 – portanto sugerindo que a presença de cavidades tridimensionais é um dos principais fatores da seletividade observada. Com o objetivo de explorar o potencial de adsorção das cavidades de impressão molecular, os estudos dos fotocatalisadores seletivos com adição de P25 foram conduzidos de maneira a manter baixa a concentração de TiO2 (de 7 a 44 mg/L em cada teste fotocatalítico). Estudos de reuso do fotocatalisador (com e sem regeneração) também foram conduzidos. Tanto os materiais de matriz inorgânica como orgânica mantiveram em pelo menos 60% da eficiência fotocatalítica original após vários ciclos. / Heterogeneous photocatalysis is a process that has a low selectivity for degradation. In this sense, the synthesis of materials with molecularly imprinting (MI) should help to overcome this problem. The photocatalyst containing MI was synthesized according to two classes: An inorganic one (via different sol-gel routes and TEOS as silica precursor) and an organic one (via non-covalent imprinting by precipitation having methacrylic acid as monomer). In the first case, MI was investigated by use of the dye (rhodamine B) and several pharmaceutical compounds as template. In case the organic matrix, diclofenac was used as the template molecule. The samples were extensively characterized by textural, structural and morphological analysis. With respect to the silica-based matrix, the systems with larger surface area values were obtained by acid route. As effect of the route, it was observed that the acid route showed a selectivity factor 47% higher than that of the non-hydrolytic route in selective adsorption tests. Among the different synthesis routes prepared by sol-gel method, the isotherms analysis showed that acid route has the highest adsorption capacity (997.9 mg/g). Compared to the P25 (commercial sample of TiO2), the photocatalysis assays (rhodamine as the template) have shown an increase in selectivity and competitiveness up to 187% and 290%, respectively. Regarding the use of pharmaceutical as template in the inorganic matrix, the imprinted photocatalyst had an increase in adsorption and photodegradation up to 751 and 427%, respectively. The systems based on the organic matrix have also showed selectivity compared to the P25. The mean value of selectivity coefficient for degradation (estimated from the non-target molecules, such as fluoxetine and paracetamol) was estimated to be 2.8 – thus, suggesting that the presence of three-dimensional cavities is a major factor in the observed selectivity. In order to explore the full potential of adsorption from the MI cavities, the photocatalyst containing P25 were prepared with the low concentration of TiO2 (from 7 to 44 mg/L in each photocatalytic test). The reuse of photocatalysts (with and without regeneration) was also studied. Both inorganic and organic matrix retained at least 60% of the original efficiency after several cycles.
49

Estratégia no delineamento de fotocatalisadores seletivos via impressão molecular

Escobar, Cícero Coelho de January 2016 (has links)
A fotocatálise heterogênea é um processo que apresenta baixa seletividade de degradação. Nesse sentido, a síntese de materiais dotados de impressão molecular (IM) deve ajudar a contornar este problema. Os fotocatalisadores dotados de IM foram sintetizados de acordo com duas classes: uma inorgância (via diferentes rotas sol-gel e TEOS como percursor de sílica) e outra orgânica (via impressão não-covalente por precipitação e ácido metacrílico como monômero). No caso da primeira, a impressão molecular foi investigada através do uso de corante (rodamina B) e diferentes fármacos como template (substrato molde). No caso da matriz orgânica, o fármaco diclofenaco foi usado como molécula template. Os materiais foram caracterizados por análises texturais, estruturais e morfológicas. Com respeito à matriz à base de sílica, os sistemas com maiores valores de área específica foram observados pela rota ácida. Como efeito da rota, foi observado que a rota ácida apresentou um fator de seletividade 47% maior que a rota não-hidrolítica em testes de adsorção seletiva. Os resultados obtidos por análise de isotermas também convergem no sentido de revelarem que a rota ácida apresentou a maior capacidade de adsorção (997,9 mg/g) dentre as diferentes rotas de síntese pelo método sol-gel. Nos ensaios de fotocatálise (rodamina como template), foi conseguido um aumento de seletividade e competitividade na fotodegradação da rodamina de até 187% e 290%, respectivamente, comparado ao P25 (amostra comercial de TiO2). Quanto ao uso de fármacos como template em matriz inorgânica, os fotocatalisadores com impressão molecular obtiveram um aumento na adsorção e fotodegradação de até 751 e 427%, respectivamente, em comparação ao P25. Os materiais baseados em matriz orgânica também apresentaram seletividade em comparação ao P25. O valor médio do coeficiente de seletividade (estimado a partir da degradação de moléculas não-alvo, a fluxetina e o paracetamol) foi estimado em 2,8 – portanto sugerindo que a presença de cavidades tridimensionais é um dos principais fatores da seletividade observada. Com o objetivo de explorar o potencial de adsorção das cavidades de impressão molecular, os estudos dos fotocatalisadores seletivos com adição de P25 foram conduzidos de maneira a manter baixa a concentração de TiO2 (de 7 a 44 mg/L em cada teste fotocatalítico). Estudos de reuso do fotocatalisador (com e sem regeneração) também foram conduzidos. Tanto os materiais de matriz inorgânica como orgânica mantiveram em pelo menos 60% da eficiência fotocatalítica original após vários ciclos. / Heterogeneous photocatalysis is a process that has a low selectivity for degradation. In this sense, the synthesis of materials with molecularly imprinting (MI) should help to overcome this problem. The photocatalyst containing MI was synthesized according to two classes: An inorganic one (via different sol-gel routes and TEOS as silica precursor) and an organic one (via non-covalent imprinting by precipitation having methacrylic acid as monomer). In the first case, MI was investigated by use of the dye (rhodamine B) and several pharmaceutical compounds as template. In case the organic matrix, diclofenac was used as the template molecule. The samples were extensively characterized by textural, structural and morphological analysis. With respect to the silica-based matrix, the systems with larger surface area values were obtained by acid route. As effect of the route, it was observed that the acid route showed a selectivity factor 47% higher than that of the non-hydrolytic route in selective adsorption tests. Among the different synthesis routes prepared by sol-gel method, the isotherms analysis showed that acid route has the highest adsorption capacity (997.9 mg/g). Compared to the P25 (commercial sample of TiO2), the photocatalysis assays (rhodamine as the template) have shown an increase in selectivity and competitiveness up to 187% and 290%, respectively. Regarding the use of pharmaceutical as template in the inorganic matrix, the imprinted photocatalyst had an increase in adsorption and photodegradation up to 751 and 427%, respectively. The systems based on the organic matrix have also showed selectivity compared to the P25. The mean value of selectivity coefficient for degradation (estimated from the non-target molecules, such as fluoxetine and paracetamol) was estimated to be 2.8 – thus, suggesting that the presence of three-dimensional cavities is a major factor in the observed selectivity. In order to explore the full potential of adsorption from the MI cavities, the photocatalyst containing P25 were prepared with the low concentration of TiO2 (from 7 to 44 mg/L in each photocatalytic test). The reuse of photocatalysts (with and without regeneration) was also studied. Both inorganic and organic matrix retained at least 60% of the original efficiency after several cycles.
50

Emprego de polimeros de impressão molecular (MIP) na extração e pre-concentração de analitos organicos em amostras biologicas seguido de determinação espectrofotometrica / Use of moleculary imprinted polymers (MIP) for extraction and pre-concentration of orgnic analytes in biological samples and spectrophotometric determination

Figueiredo, Eduardo Costa de 12 August 2018 (has links)
Orientador: Marco Aurelio Zezzi Arruda / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-12T19:20:38Z (GMT). No. of bitstreams: 1 Figueiredo_EduardoCostade_D.pdf: 6808404 bytes, checksum: 000ecbe23739fa5d1c64af83061c6da5 (MD5) Previous issue date: 2009 / Resumo: Essa Tese de Doutorado teve como objetivo promover a associação entre polímeros de impressão molecular (MIP) e espectrofotometria, sendo a seletividade conseguida pela ligação específica dos analitos com os sítios de reconhecimento molecular impresso no MIP. No capítulo 1 foi sintetizado e caracterizado um MIP seletivo a catecol, sendo o mesmo empregado na extração de catecol em amostras de guaraná (Paullinia cupana) e mate (Ilex paraguariensis), seguido de determinação espectrofotométrica (reação não específica de redução de Mn(VII) para Mn(II) pelo catecol). Obteve-se um limite de quantificação, um desvio padrão relativo (20 mmol L, n=10) e uma freqüência analítica de 2,7 mmol L, <5% e 15h, respectivamente. A exatidão foi comprovada por comparação dos resultados obtidos pelo método proposto e por HPLC. No Capítulo 2 um MIP foi empregado na extração de nicotina em amostras de urina de fumantes, seguido da quantificação por espectrofotometria (reação de redução do Mn(VII) a Mn(VI)). O limite de quantificação e a freqüência analítica foram de 1,1 mmol L e 11 h, respectivamente. As precisões intra-ensaio (10, 13 e 4%) e inter-ensaio (12, 10 e 5%) foram obtidas empregando-se padrões de 3, 10 e 30 mmol L, respectivamente e a exatidão foi comprovada por meio da técnica de HPLC. No capítulo 3 foi reportado o emprego do MIP na extração de fármacos fenotiazínicos (clorpromazina e perfenazina) em amostras de urina de pacientes. Após a extração, os fármacos foram eluidos e separados, à baixa pressão e alta velocidade, em uma coluna de C18 com tamanho de partícula entre 35 e 50 mm. Os limites de quantificação foram de 5 mmol L, para ambos os fármacos, e a exatidão foi comprovada por adição de analitos e pela técnica de HPLC / Abstract: The objective of this Thesis was the association between molecularly imprinted polymers and spectrophotometry, with the selectivity obtained through specific binding between analytes and imprinted binding sites of the polymer. In the Chapter 1, a selective MIP for catechol was synthesized, characterized, and employed for the extraction of catechol from guarana (Paullinia cupana) and mate (Ilex paraguariensis) samples, followed by indirect spectophotometric determination of catecol by reduction of Mn(VII) for Mn(II). A limit of quantification, a relative standard deviation (20 mmol L, n = 10) and an analytical frequency of 2.7 mmol L, <5% and 15h, were obtained, respectively. Accuracy was validated using HPLC. In the Chapter 2, a MIP for nicotine was used for its extraction in urine samples of smokers, followed by its indirect quantification by spectrophotometry (reduction of Mn(VII) to Mn(VI) by nicotine). The limit of quantification and analytic frequency were of 1.1 mmol L and 11 h, respectively. Intra (10, 13 and 4%) and inter-day (12, 10 and 5%) precisions were obtained using 3, 10 and 30 mmol L nicotine standard solutions, respectively, and accuracy was validated through HPLC. Finally, in the Chapter 3, a MIP was employed for phenothiazinics (chlorpromazine and perphenazine) extraction in urine samples. Soon after, the drugs were eluted and separated using a low pressure and high-speed system, comprising a C18 column with particle size between 35 and 50 mm. The quantification limits were 5 mmol L for chlorpromazine and perphenazine, and the accuracy was validated using HPLC / Doutorado / Quimica Analitica / Doutor em Ciências

Page generated in 0.039 seconds