1 |
RNAi Mediated Silencing of Cell Wall Invertase Inhibitors to Increase Sucrose Allocation to Sink Tissues in Transgenic Camelina Sativa Engineered with a Carbon Concentrating MechanismZuber, Joshua 17 July 2015 (has links)
Plant invertases are a class of proteins that have enzymatic function in cleaving sucrose to fructose and glucose. Cell wall invertase, located on the exterior of the cell wall of plant cells, plays a key role in the unloading of sucrose from the apoplast to the sink tissues. Cell wall invertase interacts with an inhibitor, cell wall invertase inhibitor, post-transcriptionally to regulate its activity. The inhibitor is constitutively expressed in pollen development, early developing seeds, and senescing leaves: indicative of sucrose allocation being a limiting factor at these stages of development. We introduced algal bicarbonate transporters LCIA/CCP1 to Camelina sativa for the purpose of increasing photosynthetic capacity. The bicarbonate transporters concentrate CO2 at RuBisCO by pumping CO2 in the form of bicarbonate through the membrane, then converting it back to CO2 at RuBisCO, increasing CO2 concentration. Results from these plants have shown an increase in seed number, but not seed mass, along with a faster rate of maturity and senescence. This is indicative of acclimation to high CO2 conditions, resulting from insertion of the bicarbonate transporters. RNA sequencing was performed and a putative invertase inhibitor was recognized as being expressed in the transgenic C. sativa but not in the wild type. Our strategy is to knock out two invertase inhibitors using induced RNA silencing, dramatically altering sucrose allocation into developing seeds and resulting in an increase in seed biomass. It is the aim of this research to increase the biomass of C. sativa seeds in order to increase its effectiveness as an agent to create sustainable biofuels.
|
Page generated in 0.1096 seconds