• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 8
  • 1
  • Tagged with
  • 77
  • 77
  • 56
  • 37
  • 33
  • 30
  • 29
  • 21
  • 18
  • 13
  • 11
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Optimisation de l'accélération directe d'électrons par une impulsion laser avec un déphasage de Gouy ajustable

Pelchat-Voyer, Shanny 13 December 2023 (has links)
Titre de l'écran-titre (visionné le 28 mars 2023) / Par sa symétrie singulière, une impulsion laser de polarisation radiale de type TM$_{0,1}$ a la particularité de développer un important champ électrique longitudinal, soit une composante de champ oscillant dans la direction de l'axe optique, dans un contexte de forte focalisation. Cet attribut lui permet d'être particulièrement bien adaptée à l'accélération de particules chargées dans le vide. Un électron se trouvant sur le passage d'une impulsion TM$_{0,1}$ suffisamment puissante peut se synchroniser avec un demi-cycle optique du champ longitudinal et être entraîné avec ce dernier pour ainsi acquérir une énergie substantielle - ce mécanisme est généralement nommé accélération directe ou accélération sous-cycle. Ce schéma d'accélération est caractérisé par une complication inévitable ; tout faisceau laser, peu importe son état de polarisation, subit une déformation de la porteuse en traversant la région focale. Cette déformation, connue sous le nom de déphasage de Gouy, a pour effet de condamner les électrons à une désynchronisation hâtive avec l'impulsion laser, nuisant ainsi à un transfert optimal d'énergie. L'idée de base de ce projet de doctorat est donc la suivante : nous souhaitons diminuer la variation totale du déphasage de Gouy d'une impulsion de type TM$_{0,1}$ sur l'axe optique afin de faciliter l'accord de phase entre les électrons et le champ, et ainsi améliorer les performances énergétiques de l'accélération directe d'électrons. Toutefois, au moment d'entamer ce doctorat, la valeur du déphasage de Gouy total des différentes composantes vectorielles du faisceau TM$_{0,1}$ fortement focalisé est encore incomplètement établie. La première partie de ce projet est donc consacrée à la compréhension des résultats disparates présents dans la littérature à ce sujet. En proposant un formalisme unificateur, nous montrons que la valeur totale du déphasage de Gouy de la composante longitudinale est toujours de 2π sur l'axe optique. Considérant cette valeur a priori immuable, la seconde partie de ce projet consiste à trouver un moyen de la réduire. Cela est fait en développant une famille de solutions aux équations de Maxwell, à l'aide des intégrales de Richards et Wolf, ayant le profil d'intensité et l'état de polarisation d'un faisceau TM$_{0,1}$, mais ayant un déphasage de Gouy ajustable. En utilisant ce nouveau type d'impulsion dans des simulations numériques d'accélération d'électrons pour différentes valeurs de déphasage de Gouy total, nous montrons qu'il s'agit d'un paramètre décisif dans le processus d'accélération sous-cycle et que la diminution de cette valeur est toujours avantageuse du point de vue énergétique. / Due to its singular symmetry, a TM$_{0,1}$ radially polarized laser pulse has the particularity of developing a strong longitudinal electric field, i.e. a field component oscillating in the direction of the optical axis, in a context of strong focusing. This attribute makes it particularly well suited to accelerate charged particles in vacuum. An electron in the path of a sufficiently strong TM$_{0,1}$ pulse can be synchronized and trapped in a single half-cycle of the longitudinal field to acquire substantial energy - this mechanism is generally referred to as direct acceleration or sub-cycle acceleration. This acceleration scheme is characterized by an unavoidable complication; any laser beam, regardless of its polarization state, undergoes a deformation of the carrier as it passes through the focal region. This deformation, known as the Gouy phase shift, causes the electrons to get preemptively out of sync with the pulse, thus hindering optimal energy transfer. The idea behind this PhD project is the following; we want to decrease the total Gouy phase variation of a TM$_{0,1}$-like pulse on the optical axis in order to facilitate the phase matching between the electrons and the field, and thereby improve the energetic performances of direct electron acceleration. However, at the beginning of this project, the value of the total Gouy phase shift of the different vector components of the strongly focused TM$_{0,1}$ beam is still not fully established. The first part of this project is therefore devoted to understanding the disparate results in the literature on that matter. By proposing a unifying formalism, we show that the total value of the Gouy phase shift for the longitudinal component is always 2π on the optical axis. Considering this a priori unchangeable value, the second part of this project is to find a way to reduce it. This is done using Richards and Wolf integrals to develop a family of solutions to Maxwell's equations for a beam with the same intensity profile and polarization state as the TM$_{0,1}$ beam, but with a tunable Gouy phase. By using this new type of pulse in numerical simulations of electron acceleration for different values of total Gouy phase variation, we show that it is indeed a decisive parameter in the sub-cycle acceleration process and decreasing this value is always beneficial from an energy point of view.
42

Source infrarouge accordable de haute énergie pour le pompage optique d'un amplificateur CO₂ à 10 microns

Kassimi, Yacine 04 October 2023 (has links)
Titre de l'écran-titre (visionné le 3 octobre 2023) / Cette thèse représente plusieurs années de travaux principalement expérimentaux dans les domaines de l'optique non-linéaire et la génération d'harmoniques ainsi que dans celui des transitions laser de la molécule de CO₂. Un historique des impulsions laser dans l'infrarouge est présenté en guise d'introduction. L'idée du pompage optique du CO₂ est également abordée ainsi que son utilisation potentielle dans l'amplification d'impulsions de 10 microns dans la perspective de générer des harmoniques d'ordre élevé dans le domaine extrême ultraviolet / rayons X. Le premier chapitre décrit le montage expérimental pour l'amplification d'impulsions laser de 10 microns en utilisant le CO₂ comme milieu de gain. Nous y présentons également la chaîne laser Ti:saphir stabilisée en phase du laboratoire du Professeur Witzel, avec son amplificateur paramétrique et son module de différence de fréquence, qui permet d'étendre le spectre dans l'infrarouge jusqu'à 20 microns. Ensuite nous décrivons le laser Nd:YAG utilisé comme pompe d'un l'oscillateur paramétrique de 2 microns, sujet principal de la thèse. Les trois chapitres suivants traitent de l'oscillateur paramétrique accordable hautement énergétique que nous avons développé durant de la thèse. Les principes de base de l'optique non-linéaire et du processus de génération de différence de fréquence sont d'abord présentés, ainsi que les paramètres de performances de l'oscillateur paramétrique avec différentes configurations. Nous poursuivons avec une caractérisation complète de l'OPO de 2 microns que nous avons développé, ce qui comprend les calculs effectués pour sa construction, la mesure de son énergie, de son accordabilité, de son facteur de qualité et la comparaison de deux configurations de miroirs différentes : simplement et doublement résonant. Finalement deux systèmes de mesure de longueurs d'onde dans l'infrarouge sont décrits, l'un basé sur l'automatisation d'un monochromateur de type Czerny-Turner et le second sur la détection des processus de somme de fréquence de l'OPO. Le chapitre qui suit aborde la conception et la fabrication de miroirs de couches minces. Une expertise dans la fabrication de miroirs et de revêtements anti-reflet à seuil de dommage élevé du visible jusqu'à 2.6 microns a été développée tout au long de la thèse. La plupart des optiques utilisées dans cette recherche ont été produites par nous-mêmes dans les installations du Centre d'optique, photonique et laser (COPL) de l'Université Laval. Finalement le dernier chapitre aborde l'amplification laser d'impulsions de 10 microns par pompage optique d'une cellule de CO₂ à haute pression. Nous y expliquons la différence entre le pompage classique par décharge électrique et le pompage optique que nous désirons utiliser. Ensuite une définition des concepts d'absorption, de section efficace d'absorption, et du principe d'élargissement des raies d'absorption y est présentée. Pour conclure nous montrons un calcul de l'élargissement des raies d'absorption par la pression avec des mesures d'absorption du CO₂ dans la zone de 2 microns. / This thesis is the result of several years of mostly experimental work and it covers the topics of non-linear optics and harmonic generation as well as the the CO₂ molecule laser transitions. A background on infrared laser pulses is presented as an introduction. The idea of CO₂ optical pumping is also discussed and its potential use in 10 micron pulse amplification in order to produce high harmonic generation in the extreme ultraviolet / x-ray range. The first chapter describes the experimental setup for 10 micron pulse laser amplification using a high pressure CO₂ cell as the gain medium. We also present the carrier-envelope phase stabilized Ti:sapphire laser system of Professor Witzel's laboratory, with its parametric amplifier and difference frequency generator blocks, which extend the output spectrum of the laser in the infrared up to 20 microns. We follow with the description of the Nd:YAG laser used as a pump source of a 2 micron OPO ("optical parametric oscillator") the main subject of the thesis. The next three chapters deal with the high energy tunable OPO developed during the thesis. The basic principles of non-linear optics and of the frequency difference generation process are first presented, as well as the performance parameters of the OPO with different configurations. A complete characterization of the 2 micron OPO follows, which includes the calculations performed for its design, the measurements of the OPO's energy, the tunability, the quality factor and the comparison of two different sets of mirrors: singly and doubly resonant OPO. Finally, two systems for measuring wavelengths in the infrared are described, the first one is based on the automation of a Czerny-Turner type monochromator and the second one on the detection of the sum frequency generation process which occurs in the OPO at the same time as the difference frequency generation process. The following chapter discusses the design and manufacture of thin film coatings mirrors. An expertise in the manufacture of mirrors and anti-reflective coatings with high damage threshold from visible up to 2.6 microns has been developed throughout the thesis. Most of the optics used in this research were produced by ourselves in the facilities of the Center for Optics, Photonics and Lasers (COPL)from Université Laval. Finally, the last chapter covers the topic of laser amplification of 10 micron pulses by optical pumping of a high-pressure CO₂ cell. We explain the difference between the conventional electric discharge pumping and optical pumping. A definition of the concepts of absorption, absorption cross-section, and the principle of broadening of the absorption lines follows. A calculation of pressure broadening of the absorption lines is presented along with CO₂ absorption measurements in the 2 micron region.
43

Amplification d'impulsions brèves de haute énergie par effet Raman stimulé dans les fibres optiques

Hardy, Maxime 24 April 2018 (has links)
Le développement au cours des dernières décennies de lasers à fibre à verrouillage de modes permet aujourd’hui d’avoir accès à des sources fiables d’impulsions femtosecondes qui sont utilisées autant dans les laboratoires de recherche que pour des applications commerciales. Grâce à leur large bande passante ainsi qu’à leur excellente dissipation de chaleur, les fibres dopées avec des ions de terres rares ont permis l’amplification et la génération d’impulsions brèves de haute énergie avec une forte cadence. Cependant, les effets non linéaires causés par la faible taille du faisceau dans la fibre ainsi que la saturation de l’inversion de population du milieu compliquent l’utilisation d’amplificateurs fibrés pour l’obtention d’impulsions brèves dont l’énergie dépasse le millijoule. Diverses stratégies comme l’étirement des impulsions à des durées de l’ordre de la nanoseconde, l’utilisation de fibres à cristaux photoniques ayant un coeur plus large et l’amplification en parallèle ont permis de contourner ces limitations pour obtenir des impulsions de quelques millijoules ayant une durée inférieure à la picoseconde. Ce mémoire de maîtrise présente une nouvelle approche pour l’amplification d’impulsions brèves utilisant la diffusion Raman des verres de silice comme milieu de gain. Il est connu que cet effet non linéaire permet l’amplification avec une large bande passante et ce dernier est d’ailleurs couramment utilisé aujourd’hui dans les réseaux de télécommunications par fibre optique. Puisque l’adaptation des schémas d’amplification Raman existants aux impulsions brèves de haute énergie n’est pas directe, on propose plutôt un schéma consistant à transférer l’énergie d’une impulsion pompe quasi monochromatique à une impulsion signal brève étirée avec une dérive en fréquence. Afin d’évaluer le potentiel du gain Raman pour l’amplification d’impulsions brèves, ce mémoire présente un modèle analytique permettant de prédire les caractéristiques de l’impulsion amplifiée selon celles de la pompe et le milieu dans lequel elles se propagent. On trouve alors que la bande passante élevée du gain Raman des verres de silice ainsi que sa saturation inhomogène permettent l’amplification d’impulsions signal à une énergie comparable à celle de la pompe tout en conservant une largeur spectrale élevée supportant la compression à des durées très brèves. Quelques variantes du schéma d’amplification sont proposées, et leur potentiel est évalué par l’utilisation du modèle analytique ou de simulations numériques. On prédit analytiquement et numériquement l’amplification Raman d’impulsions à des énergies de quelques millijoules, dont la durée est inférieure à 150 fs et dont la puissance crête avoisine 20 GW. / The development in the last decades of mode-locked fiber lasers resulted in the availability of reliable sources of femtosecond pulses that are both used for fundamental research and commercial applications. The wide gain bandwidth and excellent heat dissipation of rareearth-doped optical fibers have made possible the amplification and generation of high-energy ultrashort pulses with high repetition rates. However, phenomena such as nonlinear effects due to the small size of the beam and saturation of the population inversion in the gain medium tend to complicate their use for the amplification of pulses to energies exceeding the millijoule. Several strategies such as stretching the pulses to durations over the nanosecond, using photonic crystal fibers that have a wider core and parallelization have been used to circumvent these limitations, leading to pulses of a few millijoules with durations lower than a picosecond. This master’s thesis presents a novel approach for amplification of ultrashort pulses using stimulated Raman scattering in silica fibers as a gain mechanism. It is well known that this nonlinear effect allows the amplification with a wide bandwidth, such that it is nowadays commonly used in optical-fiber telecommunication networks. Because the adaptation of existing Raman amplification schemes to high-energy ultrashort pulses is not straightforward, we propose instead to transfer energy from a quasi-monochromatic pump pulse to a copropagating ultrashort signal pulse, stretched to comparable durations with a frequency chirp. In order to evaluate the potential of the Raman gain for the amplification of ultrashort pulses, this thesis presents an analytical model allowing the prediction of the amplified pulse’s features, depending upon those of the pump and upon the medium in which they are propagated. We thus find that the wide bandwidth of the Raman gain in silica glass, in addition to its inhomogeneous saturation, allows the amplification of signal pulses to energies of the same magnitude than that of the pump, while keeping their spectrum wide enough to support their compression to ultrashort durations. A few variants of the amplification scheme are presented, and their potential is evaluated using the analytical model or numerical simulations. We predict analytically and numerically the Raman amplification of pulses to energies of a few millijoules, whose durations are lower than 150 fs and having peak powers close to 20 GW.
44

Amplification d'un signal à 10 um par pompage optique du CO₂ utilisé comme milieu de gain / Amplification d'un signal à 10 µm par pompage optique du CO₂ utilisé comme milieu de gain / Amplification d'un signal à 10µm par pompage optique du CO₂ utilisé comme milieu de gain / Amplification d'un signal à 10um par pompage optique du CO₂ utilisé comme milieu de gain

Chantrel, Paul-Emile 16 October 2023 (has links)
Titre de l'écran-titre (visionné le 3 octobre 2023) / Cette thèse traite de l'amplification d'un laser à une longueur d'onde de 10 µm par pompage optique à 2 µm en utilisant le CO₂ comme milieu actif. L'objectif est de réaliser une preuve de concept sur ce procédé physique afin d'amplifier ultérieurement des impulsions femtosecondes. Ces impulsions seront utilisées pour effectuer des ionisations dans le domaine de la physique atomique et des champs laser intenses. Ce travail comporte deux axes principaux : la génération d'une fréquence de pompe absorbée par le milieu actif et l'amplification d'une impulsion milliseconde à 10,6 µm. Dans le premier axe (Chapitre 2), nous comparons deux types de lasers non-linéaires permettant de générer une longueur d'onde de pompe à 2 µm utilisée pour l'amplification : un oscillateur paramétriques optiques (OPO) simple et très énergétique et un système composé d'un OPO puis d'amplificateur paramétrique optique (OPA) aussi appelé MOPA ("Master Oscillator/ Parametric Amplifier"). Nous visons à créer un système capable de supporter des impulsions très énergétique (une haute fluence) ; ainsi (dans le Chapitre 3) nous étudions comment augmenter le seuil de résistance aux dommages de traitements antireflets et des miroirs. Dans le second axe, nous analysons théoriquement l'amplification d'une impulsion de 10,6 µm pompée optiquement dans un milieu actif de CO₂ à l'aide des équations d'évolution (Chapitre 4). Ce modèle nous permet de comprendre l'impact des différents paramètres physiques (pression, température, longueur du milieu actif, etc) sur l'amplification. Nous réalisons ensuite l'amplification expérimentalement (Chapitre 5) en faisant la preuve de concept avec un laser milliseconde de 10,6 µm. Nous mettons en évidence la présence de gain à 10,6 µm et discutons des résultats inattendus obtenus. / The objective of this thesis is to amplify laser pulses with a wavelength of 10 µm using optical pumping at 2 µm and CO₂ as an active medium. The aim is to establish a proof of concept for the physical process that will enable the amplification of femtosecond pulses in the future. These pulses will be used for ionization in atomic physics and intense laser fields. This work is composed of two main parts: the generation of a pump frequency which will be absorbed by the active medium and the amplification of a 10.6 µm laser millisecond pulse. In the first part (Chapter 2), we compare two nonlinear lasers capable of generating a 2 µm pump wavelength which will be used for the amplification process: a simple, highly energetic optical parametric oscillator (OPO) and a system composed of an OPO and optical parametric amplifier (OPA), also referred to as MOPA (for Master Oscillator/ Parametric Amplifier). We seek a scalable system that can support high energetic pulses (high fluence); this is why (in Chapter 3) we investigate methods to enhance the laser-induced damage threshold (LIDT) of our anti-reflection coatings and mirrors. In the second part, we studied theoretically the amplification of a 10.6 µm pulse optically pump in a CO₂ active medium using the rate equations (Chapter 4). This model helped us to understand the effects of different physical parameters (pressure, temperature, active medium length, etc) on the amplification process. We subsequently amplify a millisecond laser pulse at 10.6 µm as the proof of concept and, demonstrating that some gain was achieved. Finally, we explore the unexpected results that were obtained (Chapter 5).
45

Some advancement in ionization of atoms and molecules in intermediate intensity regime using ultra-fast laser pulses

Sharifi Kalahroudi, Seyed Mehdi 17 April 2018 (has links)
Dans cette thèse, nous présentons une étude de l'ionisation multiphotonique ou tunnel de certains atomes et molécules dans un régime intermédiaire d'intensité (~10¹³-10¹⁴ W/cm²) en utilisant des impulsions provenant d'un laser ultra rapide Ti:saphir. En étudiant l'ionisation à deux couleurs de Ar et de Xe, nous présentons un modèle pour quantifier les contributions tunnel quasi-statique et multiphotonique. La dépendance du taux d'ionisation de Ar et de Xe sur l'angle entre les vecteurs de polarisation de deux impulsions ([omega] et 2 [omega] est mesurée. L'ionisation de cinq molécules organiques, C₆H₆, C₅NH₅, C₃H₆, C₂H₄, et C₂H₂, est étudiée. Deux phénomènes sont observés. La première observation montre que la probabilité d'ionisation jusqu'à un état uniquement chargé (+1) est supprimée en comparaison avec des atomes fictifs ayant le même potentiel d'ionisation. La seconde montre que l'ionisation double de ces molécules se produit principalement par un processus non séquentiel. Ces molécules présentent une probabilité relative énorme pour l'ionisation non séquentielle, qui est attribuée à la suppression de l'ionisation multiphotonique ou tunnel d'un ion de charge +1. Finalement, pour une application de spectroscopic laser, les spectres de masse de deux isomères de butène, 1-butène et cis-2-butène ionisés par des impulsions laser femtosecondes intenses sont comparés. On montre que la différence entre ces deux spectres est beaucoup plus prononcée que celle qu'on observe sur des spectres obtenus par collisions d'électrons de 100 eV. Notre observation suggère l'application possible de l'ionisation multiphotonique dissociative par des impulsions d'un laser ultrarapide pour la spectroscopic de masse de haute performance pour distinguer des molécules similaires.
46

Interférométrie à peignes de fréquence référencés : échantillonnage optique par variation de la longueur de cavité et doublage en fréquence

Potvin, Simon 20 April 2018 (has links)
Dans le but d'étendre la plage d'utilisation des instruments à peignes de fréquence en les rendant plus polyvalents, les travaux de cette thèse présentent des solutions à deux limitations fondamentales liées à leur utilisation : le rapport cyclique de mesure utile et la bande optique limitée, et parfois non disponible, des sources lasers utilisées. La première limitation provient du fait que dans un interféromètre à peignes, la plage de l'interférogramme mesurée est fixée par le taux de répétition des peignes. Ainsi, lorsqu'une plage plus petite est nécessaire, du temps de mesure est perdu et l'utilisation de l'instrument n'est plus optimale. La solution qui est proposée est d'utiliser seulement un peigne, mais dans une configuration où l'échantillonnage optique est réalisé en variant la longueur de la cavité laser. Ensuite, pour démontrer comment la deuxième limitation peut être contournée, des peignes générés de manière non linéaire par doublage de fréquence sont utilisés pour développer un interféromètre référencé à peignes doublés. Afin d'extraire des mesures précises avec les interféromètres à peignes, le battement entre les peignes doit être référencé. Dans les travaux de cette thèse, un système de référencement optique développé pour les interféromètres à peignes est adapté aux deux instruments proposés. Dans le cas de l'interféromètre à peignes doublés, un système de référencement fonctionnant à la fréquence fondamentale des peignes est démontré. Pour évaluer les performances des instruments développés dans ces travaux, des mesures précises de l'absorption du cyanure d'hydrogène, du rubidium, de l'oxygène et de l'acétylène sont présentées, incluant des mesures moyennées sur quelques heures par un système de correction et de moyennage en temps réel.
47

Compression d'impulsions d'électrons à l'aide d'impulsions laser térahertz ultrabrèves et fortement focalisées

Robitaille, Simon 06 May 2019 (has links)
Il est possible d'accélérer des électrons par champ direct avec une impulsion laser intense de quelques cycles optiques et de polarisation radiale. Cette méthode peut générer des impulsions d'électrons convenables pour de la diffraction électronique ultrarapide. Les impulsions électroniques ainsi générées vont toutefois s'étirer en se propageant vers une cible dû à la différence d'énergie entre les électrons d'une même impulsion et à la répulsion coulombienne. Afin de comprimer ces impulsions d'électrons, nous proposons d'utiliser des impulsions laser térahertz intenses. En effet, le puissant champ électromagnétique des impulsions laser térahertz peut accélérer les électrons à l'arrière du paquet ou ralentir ceux à l'avant. Le présent mémoire de maîtrise explore la possibilité de comprimer des impulsions d'électrons en utilisant des ondes térahertz linéairement polarisées (dans le mode LP01). Des simulations numériques ont _été réalisées afin d'étudier ce schéma de compression. Les résultats montrent entre autres qu'il est possible de comprimer une impulsion électronique de 400 fs _a 150 fs avec un gain net en énergie. Cependant, les amplitudes de champ électrique nécessaires sont de l'ordre du GV/m (109 V/m), ce qui est un défi pour la technologie actuelle. Des champs électriques moins importants peuvent toutefois être utilisés pour comprimer des paquets d'électrons monoénergétiques. Les impulsions électroniques peuvent ainsi subir une compression de 350 fs _a 20 fs. Ce schéma pourrait être une alternative aux cavités radiofréquences souvent utilisées pour comprimer des impulsions électroniques. / Electrons can be directly accelerated by the longitudinal electric field component of an intense, few-cycle, radially-polarized laser pulse. It has been predicted that the method can be used to produce electron pulses suitable for ultrafast electron diffraction. However, after acceleration, electron pulses broaden as they travel up to a target due to energy dispersion and space charge effects. In ordre to achieve the compression of electron pulses, one can use intense terahertz laser pulses. In fact, the intense electromagnetic fields of terahertz laser pulses may accelerate the electrons trailing at the end of electron pulses or decelerate the electrons at the front. The present master's thesis investigate the possibility of compressing electron pulses using linearly polarized terahertz waves (LP01 mode). Numerical simulations have been made to explore this compression scheme. Some results show that a 400 fs electron pulse can be compressed to 150 fs with a net energy gain. However the required electric field amplitude must be in the GV/m scale (109 V/m), which is a challenge for actual technology. Lower electric field amplitude can be used to compress monoenergetic electron pulses. Thereby, electron pulses can be compressed from 350 fs to 20 fs. This approach may be an alternative to the radiofrequency cavity scheme often used for electron pulse compression.
48

Micro-usinage de lamelles de verre au laser femtoseconde

Hélie, David 17 April 2018 (has links)
Il a été démontré que l'utilisation d'impulsions lasers ultrabrèves pour le microusinage des verres possède plusieurs avantages. Entre autres, le phénomène d'absorption de l'énergie et l'interaction non-linéaire avec la matière permettent la production de composantes miniatures de grande qualité dans les matériaux. L'objectif de ce projet est d'utiliser de telles impulsions pour le micro-usinage de lamelles de verre de borosilicate. La première étape de ce projet consiste à étudier le clivage des lamelles de verre en borosilicate afin d'obtenir des coupes exemptes de débris et de déformations sur la surface. Ceci a été accompli en employant la technique de propagation contrôlée d'une fissure. Le processus de clivage s'effectue en deux étapes : la lamelle de verre est d'abord sujette à une contrainte mécanique en lui induisant une courbure. Ensuite, une trace de modification est inscrite au laser à l'intérieur de la lamelle. Cette trace de dommage sert de guide pour la propagation d'une fissure qui provoque la clive. La deuxième étape de ce projet consiste à étudier la soudure de matériaux transparents au laser femtoseconde. En focalisant le faisceau laser à l'interface de deux lames de verre pressées l'une contre l'autre, la densité de puissance est suffisante pour permettre l'ionisation de la matière. Ceci mène à la création d'un plasma dans un volume très restreint. En exploitant la hausse de température importante dans cette zone, il est possible de faire des joints de soudure de façon très précise. Ceci a été réalisé lors de ce projet et les résultats expérimentaux sont exposés.
49

Conception et élaboration de composants photoniques pour l'infrarouge moyen inscrits par impulsions ultra brèves

Le Camus, Arthur 10 February 2024 (has links)
«Thèse en cotutelle, Doctorat en physique, Université Laval, Québec, Canada, Philosophiæ doctor (Ph. D.) et Université de Bordeaux, Talence, France» / L’infrarouge moyen présente un grand intérêt pour de nombreuses applications dans des domaines variés comme la médecine, la biologie, l’environnement ou encore l’astronomie. Il y a donc un besoin de sources et de dispositifs fonctionnant dans cette bande de longueur d’onde s’étendant approximativement de 2 à 20 µm. L’élaboration de ces dispositifs passe par le développement de matériaux transparents dans l’infrarouge moyen puis par la fonctionnalisation optique de ces matériaux. Dans le cadre de cette thèse de doctorat, nous nous proposons d’étudier la fabrication de composants dans un verre d’oxyde de métaux lourds (baryum, gallium, germanium : BGG), dont l’intérêt est la combinaison d’une bonne transmission jusque dans l’IR moyen (de ~350 nm à ~5 µm) et de bonnes résistances mécanique et chimique. La technique utilisée pour la fonctionnalisation optique de ce verre est l’inscription directe par impulsions ultra courtes. Cette dernière permet de modifier localement – et de manière permanente – un matériau par la focalisation d’impulsions d’une durée de l’ordre de quelques dizaines ou centaines de femto secondes, générant des intensités lumineuses très importantes et permettant l’absorption non-linéaire d’une partie de l’énergie du faisceau laser. Le caractère non linéaire de l’interaction permet l’inscription de structures tridimensionnelles dans le volume du matériau. Grâce à cette technique, on peut notamment fabriquer des guides d’onde, des canaux de microfluidique et des motifs fluorescents pour ne citer que quelques exemples. Nous rapportons dans cette thèse une étude détaillée de l’inscription par laser femtoseconde dans différents types de verres BGG. Nous montrons qu’il est possible d’avoir un changement d’indice positif élevé, permettant la formation de composants à base de guides d’onde pour l’IR moyen. En particulier, nous présentons des résultats de mesures sur des guides d’onde et des coupleurs dans l’IR moyen, inscrits dans un verre BGG et dans la silice. Un autre type verre, dérivé des BGG et dopé en ions argents, est également étudié dans le cadre de l’inscription par laser femtoseconde. Comme il a été observé dans d’autres types de verres d’oxydes, les ions argent modifient l’interaction laser matière et apportent des propriétés spécifiques à l’argent : fluorescence, génération de seconde harmonique et résonance de plasmons de surface. / The mid-infrared region is of great interest for many applications in various fields such as medicine, biology, environment and astronomy. Therefore, there is a need for developing sources and devices operating in this wavelength region, spanning approximately from 2 to20 µm. The development of these devices involves the development of mid-IR transparent materials and then the optical functionalization of these materials. In the framework of this PhD thesis, we propose to study the fabrication of components in glass of heavy metaloxides (barium, gallium, germanium: BGG), whose interest is the combination of a good transmission (from ~350 nm to ~5 µm) and good mechanical and chemical resistances. The technique used for the optical functionalization of this glass is direct inscription by ultra-short pulses. This technique allows a local and permanent modification of a material by focusing pulses of a duration of a few tens or hundreds of femtoseconds, generating very high light intensities and allowing the non-linear absorption of the laser beam energy. The non-linear nature of the interaction allows the inscription of three-dimensional structures in the bulk. Thanks to this technique, we can produce waveguides, microfluidic channels and fluorescent patterns, to name but a few examples. In this thesis, we report a detailed study of femtosecond laser inscription in different types of BGG glasses. We show that it is possible to have a high positive index change, allowing the formation of waveguide-based components for mid-IR. In particular, we present measurements results on waveguides and couplers in the mid-IR, embedded in BGG glass and fused silica. Another type of glass derived from BGG and doped with silver ions is also studied with the femtosecond laser inscription. As observed in other types of oxide glasses, silver ions modify the laser-matter interaction and provide silver-specific properties such as fluorescence, second harmonic generation and surface plasmons resonance.
50

DYNAMIQUE DE LA GENERATION D'HARMONIQUES DANS LES ATOMES ET LES MOLECULES

Boutu, Willem 28 September 2007 (has links) (PDF)
La génération d'harmoniques d'ordre élevé par focalisation d'impulsions laser femtosecondes et intenses dans des gaz permet d'obtenir des trains d'impulsions attosecondes dans l'XUV. Dans cette thèse, nous présentons une technique destinée à optimiser l'efficacité de génération, puis nous montrons comment la caractérisation du rayonnement permet l'étude de la dynamique des molécules en champ fort. Dans une première partie, par une manipulation de sa phase spatiale, nous transformons le profil du faisceau laser infrarouge au foyer afin d'agrandir le volume de génération. Nous mettons en évidence la possibilité de créer un profil carré, élargi d'un facteur 2.5 par rapport au profil gaussien. Nous étudions ensuite la génération d'harmoniques dans les gaz rares par un tel faisceau, à la fois expérimentalement et numériquement. Bien que nous n'ayons pu observer d'augmentation significative du signal harmonique, les simulations effectuées à plus forte énergie indiquent un gain d'efficacité. Dans une seconde partie, nous montrons que le spectre et la phase spectrale du rayonnement harmonique issu d'un ensemble de molécules linéaires alignées présentent des structures liées aux caractéristiques des molécules. Nous mettons en évidence la présence d'un saut de phase lié à un phénomène d'interférences quantiques lors de l'étape de recombinaison. Nous étudions la dépendance de ce saut de phase en fonction de différents paramètres, tels que l'orientation des molécules ou l'éclairement de génération. Ces mesures permettent l'étude de la dynamique électronique lors de la recombinaison du paquet d'ondes électroniques. De plus, elles devront servir de support pour les nouvelles modélisations du comportement des molécules en champ intense.

Page generated in 0.0733 seconds