• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 8
  • 1
  • Tagged with
  • 76
  • 76
  • 56
  • 37
  • 33
  • 30
  • 29
  • 21
  • 18
  • 13
  • 11
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Accélération d'électrons à l'aide d'impulsions laser ultrabrèves et fortement focalisées

Marceau, Vincent 23 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2015-2016 / Lorsque fortement focalisées, les impulsions laser de haute puissance génèrent des champs électromagnétiques d’amplitude gigantesque. Ces derniers peuvent être mis à profit pour accélérer des électrons à une grande énergie sur une très courte distance. Les progrès récents dans le domaine des lasers de haute puissance laissent ainsi entrevoir des perspectives excitantes dans le développement d’une nouvelle génération d’accélérateurs laser qui seraient beaucoup plus compacts et moins dispendieux que les accélérateurs d’électrons conventionnels. Parmi les différents schémas d’accélération laser proposés, l’utilisation d’impulsions laser de polarisation radiale s’avère prometteuse. Cette méthode tire profit de la composante longitudinale du champ électrique au centre d’un faisceau laser de type TM01 afin d’accélérer des électrons le long de l’axe optique. L’objectif spécifique du projet de doctorat présenté dans cette thèse est d’étudier l’accélération d’électrons par impulsions TM01 dans le régime des impulsions ultrabrèves et fortement focalisées. Dans ces conditions extrêmes, les impulsions laser doivent impérativement être modélisées à l’aide de solutions exactes aux équations de Maxwell. Nous présentons d’abord une technique permettant d’obtenir une solution exacte sous forme fermée aux équations de Maxwell pour décrire le champ électromagnétique de l’impulsion TM01. Cette solution exacte nous permet de modéliser rigoureusement la dynamique en régime d’impulsions ultrabrèves et fortement focalisées et d’en faire ressortir les caractéristiques intéressantes. Il est également mis en évidence qu’une solution exacte pour le champ électromagnétique n’est pas seulement utile en régime non paraxial, mais qu’elle est également nécessaire pour modéliser correctement la dynamique dans des conditions de faible focalisation. Une partie de cette thèse s’intéresse finalement à une application intéressante de l’accélération par impulsions TM01 ultrabrèves et fortement focalisées, soit la production d’impulsions ultrabrèves d’électrons sous-relativistes. À l’aide de simulations particle-in-cell, nous démontrons la possibilité d’accélérer des impulsions d’électrons d’une durée de l’ordre de la femtoseconde à quelques centaines de keV d’énergie lorsqu’une impulsion TM01 de quelques centaines de gigawatts est focalisée dans un gaz de faible densité. Étant situées dans la fenêtre énergétique adéquate, ces impulsions d’électrons pourraient permettre d’améliorer significativement la résolution temporelle dans les expériences d’imagerie atomique et moléculaire par diffraction électronique ultrarapide. / When focused on a tiny spot, high-power laser pulses generate gigantic electromagnetic fields. Under these strong field conditions, charged particles can be accelerated up to high energies over short distances. Recent advances in high-power laser technology hint at exciting new possibilities in the development of a new generation of laser-driven electron accelerators that are expected to offer a robust, compact, and low-cost alternative to conventional linear accelerators. Among the many proposed laser-driven acceleration schemes, the use of radially polarized laser pulses is very promising. In this method, the electrons are accelerated along the optical axis by the strong longitudinal electric field component at the center of a TM01 beam. The main objective of this thesis is to investigate electron acceleration driven by TM01 pulses under ultrashort pulse and strong focusing conditions. In this nonparaxial and ultrashort pulse regime, the laser pulses must be rigorously modeled as exact solutions to Maxwell’s equations. We first present the tools that are used to obtain an exact closed-form solution to Maxwell’s equations for a TM01 pulse. This exact solution allows us to accurately model the acceleration process and to highlight several interesting properties of the dynamics in the nonparaxial and ultrashort pulse regime. It is also shown that an exact solution is not only useful to investigate electron acceleration under nonparaxial conditions, but also necessary to correctly describe the dynamics in the weak focusing limit. A part of this thesis is also concerned with an interesting property of the acceleration driven by ultrashort and tightly focused TM01 pulses, namely the generation of ultrashort bunches of subrelativistic electrons. Using particle-in-cell simulations, we demonstrate the possibility of generating one-femtosecond electron pulses at few-hundred-keV energies when a few-hundred-GW TM01 pulse is tightly focused in a low-density gas. Since they are located in the appropriate energy window, these electron pulses could potentially lead to a significant improvement in the time resolution of atomic and molecular imaging experiments based on ultrafast electron diffraction.
42

Génération de supercontinuum dans l'infrarouge en régime nanoseconde

Gagné, Philippe 17 April 2018 (has links)
La génération de supercontinuum consiste en un élargissement spectral extrême d'une source laser généralement pulsée par l'intermédiaire des effets non-linéaires. Une fibre optique est le plus souvent utilisée vu l'excellent confinement qu'offre ce type de milieu. La génération de supercontinuum trouve des applications dans de nombreux domaines que ce soit en spectroscopie, en métrologie, ou même en médecine. Depuis plusieurs années de nombreuses recherches ont été conduites visant à repousser les limites de l'élargissement. Pour pallier à la limite fondamentale que représente les pertes matérielles dans l'infrarouge de la silice, plusieurs se sont tournés vers des verres plus exotiques tels que les verres fluorés [?, ?, ?]; et les verres de chalcogénure [?, ?, ?]. Le but principal de ce mémoire est d'étudier en profondeur la génération de supercontinuum dans l'infrarouge à partir d'impulsions nanosecondes dans des fibres de verre fluoré. Ce mémoire présente premièrement les concepts théoriques derrière les effets non-linéaires menant à la génération de supercontinuum. Ensuite, on y décrit les méthodes utilisées pour caractériser et les propriétés importantes des fibres optiques utilisées. Finalement, les différents supercontinua générés sont présentés et les mécanismes menant à l'élargissement spectral sont analysés.
43

Étude des changements structuraux photo-induits dans le verre à l’aide des impulsions femtosecondes et application à l’inscription de composants photoniques

Bérubé, Jean-Philippe 20 April 2018 (has links)
L’intensité d’une impulsion laser femtoseconde est telle qu’il devient possible d’accéder à un régime d’interaction laser-matière hautement non-linéaire. La focalisation d’un faisceau d’impulsions femtosecondes dans un matériau transparent permet de déposer l’énergie précisément dans la zone focale. Un changement de l’indice de réfraction survient et la translation de l’échantillon permet l’inscription de structures photo-induites en trois dimensions. Ce principe peut s’appliquer à une large gamme de matériaux à la seule condition que ceux-ci soient transparents à longueur d’onde de la source laser utilisée. Ces caractéristiques confèrent au procédé dit d’inscription directe à l’aide d’impulsions femtosecondes un énorme potentiel quant au développement de composants photoniques à trois dimensions. Le développement de cet outil passe par une optimisation du procédé, ce qui sous-entend une meilleure compréhension de la réponse des matériaux aux impulsions femtosecondes. Le projet de doctorat décrit dans cette thèse porte sur l’étude des changements photo-induits et leurs applications à l’inscription de composants photoniques dans différents types de verres. Dans un premier temps, nous présentons l’auto-arrangement quasi-périodique des filaments multiples dans la silice fondue par l’entremise de l’auto-focalisation d’un faisceau doté d’un profil d’intensité fortement elliptique. Nous discutons ensuite du rehaussement de la périodicité du positionnement des filaments en insérant un masque de phase dans le trajet du faisceau. En second lieu, nous investiguons en détail l’interaction des impulsions femtosecondes avec des verres fluorés dans les régimes d’inscription mono-impulsionnel aussi bien que thermique. Ensuite, nous effectuons une étude détaillée de la photosensibilité d’un verre de chalcogénure composé de germanium et de soufre. Dans les deux cas, nous montrons que la morphologie et le signe du changement d’indice photo-induit peuvent être modifiés en variant les conditions d’exposition et ainsi permettre l’inscription directe de guides d’onde à faibles pertes. En outre, nous montrons que la réponse du Ge-S dépend de la proportion de soufre qui entre dans la composition du verre. Au final, cette thèse apporte une contribution originale au développement de la méthode d’inscription directe de composants photoniques et démontre la flexibilité de la technique en ce qui a trait à la modification de l’indice de réfraction des verres spéciaux utilisés en optique-photonique. / The intensity of a femtosecond laser pulse is strong enough to free valence electrons from the local potential of their parent atom. Therefore, the laser-matter interaction is highly non-linear which has a significant impact on the energy transfer between pulses and the material. Focusing a femtosecond pulses laser beam results in the precise deposition of energy at the focus through nonlinear absorption mechanisms. This leads to a localised refractive index change and translation of the glass sample through the focussed laser beam allows the inscription of three-dimensional photo-induced structures. The method can be applied to every material on the sole condition of transparency at the wavelength of the laser source. Those characteristics demonstrate the enormous potential of the direct writing method for the fabrication of integrated photonics devices. Further development of this powerful tool necessitates improvements of the inscription process and a better understanding of the response of optical materials to femtosecond pulses. The research project described in this thesis refers to the study of the photo-induced changes and their application to the inscription of photonic components in different types of glass. First, we demonstrated the quasi-periodic self-arrangement of multiple filaments in fused silica through self-focussing of a highly elliptical beam. We enhanced the periodicity of the multiple filaments distribution by inserting a binary phase mask in the beam path. Next, the interaction between femtosecond pulses and fluoride glasses in both repetitive and thermal inscription regime was investigated in details. An exhaustive study of the photosensitivity of Ge-S binary glass followed. In both materials we showed that the morphology and the sign of the refractive index change can be modified through precise adjustment of the exposure conditions, allowing for the direct inscription of low loss optical waveguides. Also, we showed that the response of Ge-S glass is linked with the amount of sulfur present in the glass composition. Ultimately, this thesis conveys an original contribution to the development of the direct inscription method and demonstrates the flexibility of the technique concerning the refractive index modifications of special optical glasses used in the field of optic-photonic.
44

Compression d'impulsions d'électrons à l'aide d'impulsions laser térahertz ultrabrèves et fortement focalisées

Robitaille, Simon 06 May 2019 (has links)
Il est possible d'accélérer des électrons par champ direct avec une impulsion laser intense de quelques cycles optiques et de polarisation radiale. Cette méthode peut générer des impulsions d'électrons convenables pour de la diffraction électronique ultrarapide. Les impulsions électroniques ainsi générées vont toutefois s'étirer en se propageant vers une cible dû à la différence d'énergie entre les électrons d'une même impulsion et à la répulsion coulombienne. Afin de comprimer ces impulsions d'électrons, nous proposons d'utiliser des impulsions laser térahertz intenses. En effet, le puissant champ électromagnétique des impulsions laser térahertz peut accélérer les électrons à l'arrière du paquet ou ralentir ceux à l'avant. Le présent mémoire de maîtrise explore la possibilité de comprimer des impulsions d'électrons en utilisant des ondes térahertz linéairement polarisées (dans le mode LP01). Des simulations numériques ont _été réalisées afin d'étudier ce schéma de compression. Les résultats montrent entre autres qu'il est possible de comprimer une impulsion électronique de 400 fs _a 150 fs avec un gain net en énergie. Cependant, les amplitudes de champ électrique nécessaires sont de l'ordre du GV/m (109 V/m), ce qui est un défi pour la technologie actuelle. Des champs électriques moins importants peuvent toutefois être utilisés pour comprimer des paquets d'électrons monoénergétiques. Les impulsions électroniques peuvent ainsi subir une compression de 350 fs _a 20 fs. Ce schéma pourrait être une alternative aux cavités radiofréquences souvent utilisées pour comprimer des impulsions électroniques. / Electrons can be directly accelerated by the longitudinal electric field component of an intense, few-cycle, radially-polarized laser pulse. It has been predicted that the method can be used to produce electron pulses suitable for ultrafast electron diffraction. However, after acceleration, electron pulses broaden as they travel up to a target due to energy dispersion and space charge effects. In ordre to achieve the compression of electron pulses, one can use intense terahertz laser pulses. In fact, the intense electromagnetic fields of terahertz laser pulses may accelerate the electrons trailing at the end of electron pulses or decelerate the electrons at the front. The present master's thesis investigate the possibility of compressing electron pulses using linearly polarized terahertz waves (LP01 mode). Numerical simulations have been made to explore this compression scheme. Some results show that a 400 fs electron pulse can be compressed to 150 fs with a net energy gain. However the required electric field amplitude must be in the GV/m scale (109 V/m), which is a challenge for actual technology. Lower electric field amplitude can be used to compress monoenergetic electron pulses. Thereby, electron pulses can be compressed from 350 fs to 20 fs. This approach may be an alternative to the radiofrequency cavity scheme often used for electron pulse compression.
45

Simulation numérique des processus d'excitation et d'ionisation des systèmes moléculaires à plusieurs électrons en champ laser intense

Hennani, Salima 05 December 2023 (has links)
Titre de l'écran-titre (visionné le 30 novembre 2023) / Dans cette thèse, la dynamique d'excitation électronique et d'ionisation de H₂ dans une impulsion laser intense est étudiée en utilisant une approche ab initio pour résoudre numériquement l'équation de Schrödinger dépendante du temps (TDSE) pour ce système. Nous avons développé une nouvelle méthodologie utilisant des fonctions B-Splines comme base de développement des fonctions d'onde multi-configurationnelles du système. Afin de décrire et d'analyser la dynamique d'ionisation et d'excitation électronique, nous faisons appel au programme MEDYS (Many-Electron-Dynamics System), conçu à notre laboratoire en interne, et dont l'adaptation en base B-Spline pour donner la version MEDYS-BSpline est un des objectifs de la thèse. Ce programme utilise une méthode d'interaction de configuration dépendante du temps (TDCI) pour décrire la dynamique temporelle de l'ionisation sur les voies de l'espace lié et celui des cations. En application de la méthodologie, le travail continue avec la détermination du régime d'ionisation, tunnel ou multiphotonique, quand la molécule H₂ est soumise à un rayonnement intense dans l'infra-rouge proche (de longueur d'onde λ = 800 nm). Le travail entreprend également une évaluation numérique de l'approximation du Champ Fort en comparant les résultats de calculs de la dynamique électronique utilisant l'approximation de Strong Field Approximation (SFA) avec ceux utilisant une représentation complète et non-SFA du propagateur de l'électron ionisé. / In this thesis, the dynamics of electronic excitation and ionization of H₂ in an intense laser pulse are studied using an ab initio approach to numerically solve the time-dependent Schrödinger equation (TDSE) for this system. We have developed a new methodology using B-Spline functions as a basis for developing the multiconfigurational wave functions of the system. To describe and analyze the dynamics of ionization and electronic excitation, we employ the in-house program called Many-Electron-Dynamics System (MEDYS), and one of the objectives of the thesis is to adapt it to the B-Spline basis, resulting in the MEDYS-BSpline version. This program utilizes a time-dependent configuration interaction (TDCI) method to describe the temporal dynamics of ionization in both bound and cationic states. Applying this methodology, the work continues with the determination of the ionization regime, either tunneling or multiphoton, when H₂ is subjected to intense radiation in the near-infrared (wavelength λ = 800 nm). The work also undertakes a numerical evaluation of the Strong Field Approximation (SFA) by comparing the results of electronic dynamics calculations using the SFA approximation with those using a full and non-SFA representation of the ionized electron propagator.
46

Génération de supercontinuum en régime femtoseconde dans l'infrarouge moyen dans des fibres optiques

Thibault-Maheu, Olivier 23 April 2018 (has links)
La génération de supercontinuum est un élargissement spectral extrême survenant dans un matériau dispersif et non linéaire comme la fibre optique. Ce phénomène est mis à profit dans plusieurs domaines comme la spectroscopie, la métrologie et la sécurité. Plusieurs de ces applications nécessitent de la lumière dans la fenêtre de transmission atmosphérique entre 3 et 5 μm. Par contre, les matériaux les plus utilisés actuellement pour la génération de supercontinuum, comme la silice et le ZBLAN, sont opaques dans cette plage spectrale, ce qui justifie l’utilisation de nouveaux matériaux ayant une transparence accrue à ces longueurs d’onde. Nous proposons donc l’utilisation de fibres de fluoroindate et de trisulfure d’arsenic pour pallier cette limitation. Les fibres fabriquées de ces matériaux possèdent des pertes intrinsèques assez faibles pour la génération de supercontinuum dans cette plage spectrale. Dans ce travail, nous avons démontré un supercontinuum très large dans la fibre de fluoroindate en la pompant avec des impulsions femtosecondes à 2,5 μm en régime de dispersion anomale. Les résultats n’ont pas été aussi prometteurs pour la fibre de chalcogénure étant donnée la dispersion fortement normale à cette longueur d’onde et son seuil de dommage très faible. / Supercontinuum generation is an extreme spectral broadening that takes place in a dispersive and nonlinear medium like an optical fiber. It has found applications in various fields such as spectroscopy, metrology and defense and security. Some of them require light with a broad spectrum covering the atmospheric transmission window between 3 and 5 μm. However, currently used fibers like silica and ZBLAN have limited transmission in this range, thus justifying the use of new materials. We propose the use of fluoroindate and arsenic trisulfide fibers to serve this purpose. Both of these materials have been drawn in fibers with very low transmission losses over this spectral range. In this work, we used femtosecond pulses to generate supercontinuum in fluoroindate and arsenic trisulfide fibers. We demontrated a very broad supercontinuum in the fluoroindate fiber using femtosecond pulses in the anomalous dispersion regime of the fiber at 2.5 μm. The results were not that promising in chalcogenide fibers because of large normal dispersion at the wavelength used and low damage threshold.
47

Conception d'un phase-mètre de type Stéréo-ATI : appareil de détection de la phase absolue d'impulsions laser ultrabrèves par stéréodétection de photoélectrons ATI

Prévost, Louis 23 April 2018 (has links)
Générer des impulsions laser attosecondes requiert l’utilisation d’impulsions laser femtosecondes focalisées dans un gaz qui produit, par rediffusion, les harmoniques du rayonnement incident. Ce processus donne naissance au spectre XUV qui composera les impulsions désirées. Leur génération est optimisée par le contrôle des paramètres qui caractérisent l’impulsion femtoseconde : puissance, durée de l’impulsion, spectre fréquentiel et phase absolue. Tous ces paramètres, sauf la phase absolue, se mesurent avec des équipements facilement disponibles. Pour mesurer la phase absolue, nous construisons un Stéréo-ATI selon le concept proposé et démontré par une équipe de recherche en 2003. Plusieurs propriétés de l’ionisation induite par impulsions femtosecondes, dont les spectres photoélectroniques, sont montrées pour expliquer le fonctionnement de l’appareil. Des simulations de spectres de temps de vol et des explications plus techniques sont utilisées pour définir les propriétés de la machine et les appareils utilisés pour monter une expérience complète de détection de phase absolue. / Attosecond laser pulse generation requires the use of femtosecond laser pulses focused in a gas which produces, by rescattering, harmonics of the incident beam. This process gives birth to the XUV spectra composing the desired pulses. Their generation is optimised by controlling the characteristic parameters of the femtosecond pulses: power, pulse duration, frequency spectra and absolute phase. All these parameters, excluding the absolute phase, can be measured with some easily available equipment. To measure the absolute phase, we build a Stereo-ATI from the concept proposed and demonstarted by a research team in 2003. Many properties of the femtosecond induced ionization, among which photoelectronic spectra, are shown to explain how the apparatus works. Simulations of time of flight spectra and some more technical explanations are used to define the apparatus properties and the equipment used to mount a complete absolute phase detection experiment.
48

Micro-usinage de lamelles de verre au laser femtoseconde

Hélie, David 17 April 2018 (has links)
Il a été démontré que l'utilisation d'impulsions lasers ultrabrèves pour le microusinage des verres possède plusieurs avantages. Entre autres, le phénomène d'absorption de l'énergie et l'interaction non-linéaire avec la matière permettent la production de composantes miniatures de grande qualité dans les matériaux. L'objectif de ce projet est d'utiliser de telles impulsions pour le micro-usinage de lamelles de verre de borosilicate. La première étape de ce projet consiste à étudier le clivage des lamelles de verre en borosilicate afin d'obtenir des coupes exemptes de débris et de déformations sur la surface. Ceci a été accompli en employant la technique de propagation contrôlée d'une fissure. Le processus de clivage s'effectue en deux étapes : la lamelle de verre est d'abord sujette à une contrainte mécanique en lui induisant une courbure. Ensuite, une trace de modification est inscrite au laser à l'intérieur de la lamelle. Cette trace de dommage sert de guide pour la propagation d'une fissure qui provoque la clive. La deuxième étape de ce projet consiste à étudier la soudure de matériaux transparents au laser femtoseconde. En focalisant le faisceau laser à l'interface de deux lames de verre pressées l'une contre l'autre, la densité de puissance est suffisante pour permettre l'ionisation de la matière. Ceci mène à la création d'un plasma dans un volume très restreint. En exploitant la hausse de température importante dans cette zone, il est possible de faire des joints de soudure de façon très précise. Ceci a été réalisé lors de ce projet et les résultats expérimentaux sont exposés.
49

DYNAMIQUE DE LA GENERATION D'HARMONIQUES DANS LES ATOMES ET LES MOLECULES

Boutu, Willem 28 September 2007 (has links) (PDF)
La génération d'harmoniques d'ordre élevé par focalisation d'impulsions laser femtosecondes et intenses dans des gaz permet d'obtenir des trains d'impulsions attosecondes dans l'XUV. Dans cette thèse, nous présentons une technique destinée à optimiser l'efficacité de génération, puis nous montrons comment la caractérisation du rayonnement permet l'étude de la dynamique des molécules en champ fort. Dans une première partie, par une manipulation de sa phase spatiale, nous transformons le profil du faisceau laser infrarouge au foyer afin d'agrandir le volume de génération. Nous mettons en évidence la possibilité de créer un profil carré, élargi d'un facteur 2.5 par rapport au profil gaussien. Nous étudions ensuite la génération d'harmoniques dans les gaz rares par un tel faisceau, à la fois expérimentalement et numériquement. Bien que nous n'ayons pu observer d'augmentation significative du signal harmonique, les simulations effectuées à plus forte énergie indiquent un gain d'efficacité. Dans une seconde partie, nous montrons que le spectre et la phase spectrale du rayonnement harmonique issu d'un ensemble de molécules linéaires alignées présentent des structures liées aux caractéristiques des molécules. Nous mettons en évidence la présence d'un saut de phase lié à un phénomène d'interférences quantiques lors de l'étape de recombinaison. Nous étudions la dépendance de ce saut de phase en fonction de différents paramètres, tels que l'orientation des molécules ou l'éclairement de génération. Ces mesures permettent l'étude de la dynamique électronique lors de la recombinaison du paquet d'ondes électroniques. De plus, elles devront servir de support pour les nouvelles modélisations du comportement des molécules en champ intense.
50

Mesures et contrôles temporels dans le domaine des lasers ultrabrefs.

Oksenhendler, Thomas 20 December 2004 (has links) (PDF)
Cette thèse présente le développement d'un système de balayage de caméra à balayage de fente parfaitement synchronisé avec un laser impulsionnel femtoseconde. Cette application des photoconducteurs rapides ("commutateurs Auston") haute tension, permet d'obtenir des résolutions de caméra à balayage de fente subpicoseconde en mode d'accumulation d'images, avec des lasers d'énergie quelques centaines de microJoules par impulsion. Deux autres applications de ces photoconducteurs haute tension sont étudiées : - La commutation optique par une cellule de Pockels ultra-rapide de temps de montée inférieure à 100ps ayant une gigue temporelle inférieure à 2ps. - La stabilisation en énergie des impulsions laser ultrabrèves, coup par coup, à l'aide d'une cellule de Pockels commandée par un photoconducteur. Le photoconducteur (commandé en avance par une impulsion extraite de l'impulsion principale) commande la cellule de Pockels à diminuer les fluctuations. Une première expérience montre une amélioration d'un ordre de grandeur (de 7% à 0.7%). Parallèlement, une application du filtre acousto-optique dispersif programmable (Dazzler TM) à la mesure de la phase spectrale des impulsions femtosecondes est présentée. Les méthodes de mesures temporelles résultant d'un filtrage linéaire suivi d'une détection non linéaire, il est possible de réaliser la fonction de filtrage linéaire par le Dazzler TM remplaçant le montage optique souvent complexe. Il a été ainsi réalisé expérimentalement pour la première fois des mesures d'autocorrélation en bande de base et d'interférométrie spectrale à décalage par transformée de Fourier (Time-domain SPIDER).

Page generated in 0.074 seconds