• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a forced-convection gas target for improved thermal performance

Uittenbosch, T., Buckley, K., Schaffer, P., Hoehr, C. 19 May 2015 (has links) (PDF)
Introduction The internal pressure experienced by a gas tar-get during irradiation is dependent on the beam energy deposited in the target, the beam cur-rent, and the thermal behaviour of the target. [1] The maximum beam energy deposited is a function of the cyclotron capabilities and the gas inventory within the target. The maximum beam current is limited by the pressure produced in the target and the ability of the target assembly to remain intact. This is also a function of the thermal behaviour of the target, which is difficult to predict a priori since it is dependent on such things as convection currents that occur during irradiation. We conducted bench tests with model gas targets with and without forced convection currents to observe the effect on thermal behaviour. Based on those results we constructed a prototype gas target, suitable for irradiation, with an internal fan assembly that is rotated via external magnets. Material and Methods Bench tests were conducted with cylindrical and conical target bodies of aluminum. A nickel-chromium heater wire was inserted into the gas volume through the normal beam entrance port (FIGURE 1) to heat the gas while water cooling was applied to the target body. The voltage and current of the heater coil was monitored along with the pressure inside the target and the water inlet and outlet temperature. In the case of tests with a driven fan blade either the voltage applied to the electric motor was monitored or the fan speed itself was recorded. By assuming the ideal gas law, the pressure gives the average bulk temperature and a global heat transfer coefficient can be calculated between the target gas and the cooling water. [2] A cylindrical target body was constructed that incorporated a fan blade driven by an external motor. This assembly used a simple o-ring seal on the rotating shaft. This seal was not robust enough for any tests under beam conditions. A prototype design suitable for in-beam operation employs a propeller mounted on a rotating disc housing two samarium cobalt magnets and spinning on two micro-bearings which are constructed to operate in high temperature environments. The micro-bearings are mounted on a pin projecting from a plate welded to the back of the gas target to allow assembly of the fan mechanism prior to attachment to the body (FIGURE 2).
2

Development of a forced-convection gas target for improved thermal performance

Uittenbosch, T., Buckley, K., Schaffer, P., Hoehr, C. January 2015 (has links)
Introduction The internal pressure experienced by a gas tar-get during irradiation is dependent on the beam energy deposited in the target, the beam cur-rent, and the thermal behaviour of the target. [1] The maximum beam energy deposited is a function of the cyclotron capabilities and the gas inventory within the target. The maximum beam current is limited by the pressure produced in the target and the ability of the target assembly to remain intact. This is also a function of the thermal behaviour of the target, which is difficult to predict a priori since it is dependent on such things as convection currents that occur during irradiation. We conducted bench tests with model gas targets with and without forced convection currents to observe the effect on thermal behaviour. Based on those results we constructed a prototype gas target, suitable for irradiation, with an internal fan assembly that is rotated via external magnets. Material and Methods Bench tests were conducted with cylindrical and conical target bodies of aluminum. A nickel-chromium heater wire was inserted into the gas volume through the normal beam entrance port (FIGURE 1) to heat the gas while water cooling was applied to the target body. The voltage and current of the heater coil was monitored along with the pressure inside the target and the water inlet and outlet temperature. In the case of tests with a driven fan blade either the voltage applied to the electric motor was monitored or the fan speed itself was recorded. By assuming the ideal gas law, the pressure gives the average bulk temperature and a global heat transfer coefficient can be calculated between the target gas and the cooling water. [2] A cylindrical target body was constructed that incorporated a fan blade driven by an external motor. This assembly used a simple o-ring seal on the rotating shaft. This seal was not robust enough for any tests under beam conditions. A prototype design suitable for in-beam operation employs a propeller mounted on a rotating disc housing two samarium cobalt magnets and spinning on two micro-bearings which are constructed to operate in high temperature environments. The micro-bearings are mounted on a pin projecting from a plate welded to the back of the gas target to allow assembly of the fan mechanism prior to attachment to the body (FIGURE 2).

Page generated in 0.0469 seconds