• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cell Instructive Biomaterials for Neural Tissue Engineering

Lomboni, David 10 January 2024 (has links)
Cells in multicellular organisms are surrounded by a complex three-dimensional macromolecular extracellular matrix (ECM). This matrix, traditionally thought to uniquely serve a structural function providing support and strength to cells within tissues, is increasingly being recognized to have pleiotropic effects in neurogenesis and regeneration processes such as neocortex folding, stem cell niche maintenance, peripheral nerve regeneration, axonal growth, and many more. ECM mediates these processes via cell-ECM interactions which provide the cells with a wealth of signals including biophysical and mechanical cues in a spatiotemporal manner. Owing to the importance of the surrounding microenvironment, modern neural tissue engineering strategies have focused on the development of engineered biomaterials capable of finely instructing the neuronal response according to their physicochemical characteristics. Neurons and neural stem cells are in fact sensitive to their mechanical and topographical environment, and cell–substrate binding contributes to this sensitivity by activating specific signaling pathways for basic cell function. In addition, the advances in nanotechnology have opened the possibility of introducing decorative nano-motifs that interact with cells at the molecular level. Successful strategies in tissue engineering are driven by not only advances in the synthesis of highly instructive biomaterials but also greatly depend on the right selection of cell sources. As a matter of fact, advances in neural tissue engineering have been strongly hampered by the poor availability of cell sources, considering that primary neurons are the only type of cells that do not proliferate. The discovery of induced pluripotent stem cells (iPSCs) has addressed many of the cell-related limitations in neural tissue engineering, offering the possibility to consistently produce a wide range of neural cell lines. Advances in cell biology have led to the development of iPSCs-derived brain spheroid, which surely represent the most promising tools for several neural tissue engineering applications ranging from in vitro modelling of neurodegenerative diseases (i.e., Parkinson's, Huntington's and Alzheimer's), biomaterials testing and drug screening platforms. The overarching goal of my doctoral work was to engineer biomaterials with instructive physicochemical properties to elicit beneficial cellular responses that are suitable for different neural tissue engineering applications such as nerve regeneration and 3D in vitro modelling. In the first study (Chapter 2), I evaluated the compounded effects of surface stiffness and micro-topography on dorsal root ganglion and human bone-marrow mesenchymal stem cells behavior. To this end, arrays of parallel microchannels of different geometries were introduced on the surface of chitosan films by electrophoretic replica deposition. In addition, a novel chemical crosslinking with citric acid was performed to both enhance the long-term stability of the chitosan films and fine-tune the surface stiffness for the investigation of its role in cell behavior. In the second study (Chapter 3), I developed a novel nanocomposite consisting of a collagen hydrogel decorated with glycine-derived carbon nanodots (Gly-CNDs). After a comprehensive physicochemical characterization of the resulting nanocomposite, I evaluated the effects exerted on neuronal differentiation and electrophysiological maturation of mouse iPSCs-derived brain spheroid. In the third study (Chapter 4), I optimized an alignable collagen-based hydrogel characterized by anisotropically oriented fibers with potential applications in both peripheral and central nervous system repair. I established a protocol that encompasses the introduction in the collagen solution of biodegradable laminin-functionalized magnetic microbeads and the time-controlled application of an external magnetic field. The regenerative potential of the hydrogel was unveiled using mouse iPSCs-derived neural stem cells.
2

A novel in vitro model for mature Toxoplasma gondii tissue cysts allows functional characterization of bradyzoite biology

Christiansen, Céline 31 May 2023 (has links)
Toxoplasma gondii bildet im Nerven- und Muskelgewebe seines Zwischenwirts persistente enzystierte Bradyzoiten, die Immunreaktionen und medizinischen Behandlungen entgehen. Der experimentelle Zugang zu reifen Zysten ist auf ex vivo Modelle beschränkt und die Bradyzoiten-Biologie unzureichend erforscht. Das Metabolom oder Wirtszell-Bradyzoiten-Interaktionen und Persistenzmechanismen sind mit aktuellen in vitro und in vivo Modellen schwer zu adressieren. Um dies zu ermöglichen, war es das Ziel dieser Arbeit ein in vitro Modell zur Generierung reifer T. gondii Zysten zu etablieren und zu charakterisieren. Dieses System wurde verwendet, um (1) das Metabolom von reifen enzystierten Bradyzoiten im Vergleich zu Tachyzoiten zu charakterisieren, (2) Wirtszell-Bradyzoiten-Interaktionen zu untersuchen und (3) einen Zellteilungsmarker für Bradyzoiten zu etablieren. Bradyzoiten wurden in ausdifferenzierten menschlichen Myotuben generiert und zeigten typische ultrastrukturelle Charakteristika und Antigenexpression. Die Bradyzoiten zeigten auch funktionelle Merkmale wie Resistenz gegen Pepsin, Temperatur und Antiparasitika, die von der Reifungszeit abhängig waren. Der metabolische Fingerabdruck von Bradyzoiten wurde mit Tachyzoiten mit Hilfe einer ungezielten HILIC-UHPLC / MS-basierten Metabolomik-Plattform verglichen. Während die Hemmung der Aconitase durch Natriumfluoracetat letal in Tachyzoiten wirkte, tolerierten Bradyzoiten eine längere Hemmung des Enzyms. Stabile isotopenmetabolische Markierung und pharmakologische Modulation des Wirt Lipidstoffwechsels wiesen auf eine entscheidende Rolle der Wirts Carnitinester für den Fettsäureimport und die Entgiftung der antimikrobiellen Linolsäure hin. Um einen Zellteilungsmarker auf Einzelzellebene zu entwickeln, wurden Klick-Chemie nachweisbare Nukleosidanaloga auf Toxizität in beiden Stadien und ihr jeweiliges Inkorporationsprofil untersucht. Drei der Analoga wurden ohne toxische Wirkungen in die DNA von beiden Stadien eingebaut. / Toxoplasma gondii forms persistent encysted bradyzoites inside neuronal and muscle tissue of its intermediate host, which resist immune responses and medical treatments. Experimental access to mature tissue cysts is limited to ex vivo models and the biology of bradyzoites remains understudied. Aspects like the metabolome or bradyzoite-host-interactions and mechanisms of persistence are difficult to address using current in vitro and in vivo models. To overcome these restrictions, the aim of this thesis was the establishment and characterization of an in vitro model for the generation of matured T. gondii tissue cysts. This system then should be used to (1) characterize the metabolome of matured encysted bradyzoites in comparison with tachyzoites, (2) interrogate bradyzoite-host-interactions and (3) establish a cell division marker for bradyzoites that allows studying bradyzoite heterogeneity. Encysted bradyzoites were grown in terminally differentiated human myotubes and showed typical ultrastructural hallmarks and antigen expression. These bradyzoites contained functional hallmarks like resistance to pepsin, temperature and commonly used antiparasitics that were dependent on maturation time. The metabolic fingerprint of bradyzoites was compared to tachyzoites using an untargeted HILIC-UHPLC / MS based metabolomics platform. While tachyzoites succumbed to inhibition of their aconitase by sodium fluoroacetate, bradyzoites tolerated prolonged inhibition of this enzyme. Further, stable isotope-metabolic labeling and pharmacological modulation of host lipid metabolism indicated a critical role of host carnitine esters for fatty acid import and for the detoxification of antimicrobial linoleic acid. To develop a single cell-resolved cell division marker, we screened click chemistry-detectable nucleoside analogues for toxicity on both stages and their respective incorporation profile. Three compounds labelled both bradyzoite and tachyzoite nuclei without toxic effects.

Page generated in 0.0913 seconds