• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Protein–DNA Recognition : <i>In Vitro</i> Evolution and Characterization of DNA-Binding Proteins

Nilsson, Mikael January 2004 (has links)
<p>DNA-recognizing proteins are involved in a multitude of important life-processes. Therefore, it is of great interest to understand the underlying mechanisms that set the rules for sequence specific protein–DNA interactions. Previous attempts aiming to resolve these interactions have been focused on naturally occurring systems. Due to the complexity of such systems, conclusions about structure–function relationship in protein–DNA interactions have been moderate. </p><p>To expand the knowledge of protein–DNA recognition, we have utilized<i> in vitro</i> evolution techniques. A phage display system was modified to express the DNA-binding, helix-turn-helix protein Cro from bacteriophage λ. A single-chain variant of Cro (scCro) was mutated in the amino acid residues important for sequence-specific DNA-binding. Three different phage-libraries were constructed. </p><p>Affinity selection towards a synthetic ORas12 DNA-ligand generated a consensus motif. Two clones containing the motif exhibited high specificity for ORas12 as compared to control ligands. The third library selection, based on the discovered motif, generated new protein variants with increased affinity for ORas-ligands. Competition experiments showed that Arg was important for high affinity, but the affinity was reduced in presence of Asp or Glu. By measuring <i>K</i><sub>D</sub> values of similar variant proteins, it was possible to correlate DNA-binding properties to the protein structure.</p><p>mRNA display of scCro was also conducted. The system retained the wild-type DNA-binding properties and allowed for functional selection of the mRNA–scCro fusion. Selected species was eluted and the gene encoding the scCro was recovered by PCR. </p><p>The two <i>in vitro</i> selection methods described in this thesis can be used to increase the knowledge of the structure–function relationship regarding protein–DNA recognition. Furthermore, we have also shown that new helix-turn-helix proteins exhibiting novel DNA-binding specificity can be constructed by phage display. The ability to construct proteins with altered DNA-specificity has various important applications in molecular biology and in gene therapy.</p>
2

Protein–DNA Recognition : In Vitro Evolution and Characterization of DNA-Binding Proteins

Nilsson, Mikael January 2004 (has links)
DNA-recognizing proteins are involved in a multitude of important life-processes. Therefore, it is of great interest to understand the underlying mechanisms that set the rules for sequence specific protein–DNA interactions. Previous attempts aiming to resolve these interactions have been focused on naturally occurring systems. Due to the complexity of such systems, conclusions about structure–function relationship in protein–DNA interactions have been moderate. To expand the knowledge of protein–DNA recognition, we have utilized in vitro evolution techniques. A phage display system was modified to express the DNA-binding, helix-turn-helix protein Cro from bacteriophage λ. A single-chain variant of Cro (scCro) was mutated in the amino acid residues important for sequence-specific DNA-binding. Three different phage-libraries were constructed. Affinity selection towards a synthetic ORas12 DNA-ligand generated a consensus motif. Two clones containing the motif exhibited high specificity for ORas12 as compared to control ligands. The third library selection, based on the discovered motif, generated new protein variants with increased affinity for ORas-ligands. Competition experiments showed that Arg was important for high affinity, but the affinity was reduced in presence of Asp or Glu. By measuring KD values of similar variant proteins, it was possible to correlate DNA-binding properties to the protein structure. mRNA display of scCro was also conducted. The system retained the wild-type DNA-binding properties and allowed for functional selection of the mRNA–scCro fusion. Selected species was eluted and the gene encoding the scCro was recovered by PCR. The two in vitro selection methods described in this thesis can be used to increase the knowledge of the structure–function relationship regarding protein–DNA recognition. Furthermore, we have also shown that new helix-turn-helix proteins exhibiting novel DNA-binding specificity can be constructed by phage display. The ability to construct proteins with altered DNA-specificity has various important applications in molecular biology and in gene therapy.
3

Biochemical Studies on a Plant Epoxide Hydrolase : Discovery of a Proton Entry and Exit Pathway and the Use of In vitro Evolution to Shift Enantioselectivity

Gurell, Ann January 2010 (has links)
The work leading to this thesis has provided additional information and novel knowledge concerning structure-function relationship in the potato epoxide hydrolase. Epoxide hydrolases are enzymes catalyzing the hydrolysis of epoxides to yield the corresponding vicinal diols. The reaction mechanism proceeds via a nucleophilic attack resulting in a covalent alkylenzyme intermediate, which in turn is attacked by a base-activated water molecule, followed by product release. Epoxides and diols are precursors in the production of chiral compounds and the use of epoxide hydrolases as biocatalysts is growing. The promising biocatalyst StEH1, a plant epoxide hydrolase from potato, has been investigated in this thesis. In paper I the active site residue Glu35, was established to be important for the formation of the alkylenzyme intermediate, activating the nucleophile for attack by facilitated proton release through a hydrogen bond network. Glu35 is also important during the hydrolytic half reaction by optimally orienting the hydrolytic water molecule, aiding in the important dual function of the histidine base. Glu35 makes it possible for the histidine to work as both an acid and a base. In paper II a putative proton wire composed of five water molecules lining a protein tunnel was proposed to facilitate effective proton transfer from the exterior to the active site, aiding in protonation of the alkylenzyme intermediate. The protein tunnel is also proposed to stabilize plant epoxide hydrolases via hydrogen bonds between water molecules and protein. Enzyme variants with modified enantiospecificity for the substrate (2,3-epoxypropyl)benzene have been constructed by in vitro evolution using the CASTing approach. Residues lining the active site pocket were targeted for mutagenesis. From the second generation libraries a quadruple enzyme variant, W106L/L109Y/V141K/I155V, displayed a radical shift in enantioselectivity. The wild-type enzyme favored the S-enantiomer with a ratio of 2:1, whereas the quadruple variant showed a 15:1 preference for the R-enantiomer.
4

Výskyt a charakterizace sekundárních struktur u nových proteinových sekvencí (never born proteins) / Never Born Proteins: Occurence and characterization of secondary structure motifs

Treťjačenko, Vjačeslav January 2015 (has links)
An experimental study on randomly generated protein sequences can provide important insights into the origin and mechanism of secondary structure formation and protein folding. In this study we bring biophysical characterization of five protein sequences selected from the in silico generated library of random chains. The sequences were selected on the basis of bioinformatic analysis in order to find the candidates with the maximum potential to possess secondary structure. This study shows that the random polypeptide sequences form stable secondary structures and in some show the signs of tertiary structure, such as hydrophobic core formation and distinctive oligomerization pattern. While the work presented in this thesis is work in progress on a larger study, the data already demonstrate that unevolved protein sequence space provides a lot of potential for secondary and tertiary structure formation that awaits its characterization. Powered by TCPDF (www.tcpdf.org)
5

Evolve and Resequencing (E & R) of Toxoplasma Gondii During Lab-Adaptation to Identify Virulence Factors:

Primo, Vincent Anthony January 2020 (has links)
Thesis advisor: Marc-Jan Gubbels / The two type I genotype T. gondii strains, RH, a lab-adapted strain, and GT1, a non-lab-adapted strain, have a genetic difference of only 0.002%, but show remarkable phenotypic differences in vitro. For example, it has long been known that RH’s in vitro virulence (i.e. plaquing capacity) and extracellular survival is far superior to that of GT1, likely due to several decades of adaptation to the in vitro environment (i.e. lab-adaptation). The genetic basis of these phenotypes, however, remains largely unknown despite previous allele-swapping experiments, thus inspiring two hypotheses: 1) epistatic interactions between two or more alleles and/or 2) gene regulatory mechanisms are responsible for lab-adaptive phenotypes. Uncovering the molecular basis underlying lab-adaptive phenotypes will support our growing understanding of T. gondii virulence and suggest therapeutic targets that affect the parasites lytic cycle in a host-independent manner. To answer this question, we applied Evolve and Resequencing (E&R) of GT1 during the first 1500 generations of its lab-adaptation in order to chronologically identify emerging genotype-phenotype correlations. Indeed, lab-adaptation augmented GT1’s in vitro virulence by improving its extracellular survival and reinvasion capabilities- both extracellular phenotypes of the lytic cycle. DNA-sequencing of parallel GT1 populations at multiple evolutionary timepoints (i.e. passages) identified a polymorphic phospholipid flippase gene whose gene expression is critical for in vitro virulence but, unfortunately, the evolved mutations could not be functionally characterized due to technical limitations. RNA-seq of both intracellular and extracellular parasites across several passages identified hundreds of “pro-tachyzoite” differentially expressed genes (DEGs), but only in extracellular parasites, paralleling our phenotypic observations. Interestingly, several upregulated DEGs are connected to fatty acid biosynthesis. Lastly, genetic KO of five seemingly non-related DEGs indicates that GT1’s lab-adaptive in vitro virulence is a complex and polygenic phenotype that is largely controlled by mechanisms independent of genomic mutations. / Thesis (PhD) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Biology.
6

SHV β-lactamases : DNA diagnostics and evolution

Hammond, David Scott January 2006 (has links)
TEM and SHV β-lactamases are the most prevalent β-lactamases among Gram-negative bacteria. The introduction and widespread use of expanded-spectrum antibiotics, particularly third generation cephalosporins, has led to the evolution of bacterial strains expressing extended spectrum β-lactamases (ESBLs). ESBLs emerge by genetic point mutation from non-extended spectrum precursors. It was found that multiple β-lactamase families within single isolates complicate the process of detecting the resistance status of isolate using non-quantitative DNA diagnostic methods. Preliminary phenotypic characterisation of probable β-lactamase enzyme family types present in 100 isolates from the Asia-Pacific and South African locales showed that single isolates frequently contained multiple β-lactamase families. SHV, TEM, AMPC and CTX-M β-lactamase families were detected in these isolates using PCR detection methods. Ninety-eight percent of all isolates tested contained as least one β-lactamase gene, with up to four to β-lactamase gene families found to co-exist in single isolates. Kinetic PCR methods for interrogating the polymorphic sites at blaSHV codons 238 & 240 and blaTEM codons 164, 238, 240 as well as promoter polymorphism were developed. A high proportion of blaSHV 238 and 240 mutant alleles was found to correlate with cefotaxime, ceftazidime and aztreonam resistance levels. In an attempt to understand the molecular basis for the co-existence of multiple blaSHV alleles within single isolates, the blaSHV promoter region was cloned from one ESBL expressing isolate. Experimental results showed that blaSHV can exist downstream of two different promoters within a single isolate. Both promoters have previously been reported, and differ by the presence or absence of IS26, which results in a change in the transcription initiation site. The blaSHV gene copy numbers in cis with the different promoters were measured, and it was found that the copy number of the IS26::blaSHV promoter was positively correlated with resistance levels. Cloning and analysis of PCR products showed that different blaSHV variants existed in cis with promoters in individual isolates. However, mutant genes were more abundant downstream of the IS26 promoter. There were no ESBL+ isolates without this promoter. It was concluded that blaSHV in cis with the IS26 promoter is located on an amplifiable replicon, and the presence of the IS26 insertion may facilitate the acquisition of an ESBL+ phenotype. To further confirm the role of IS26 in resistance acquisition, ESBL negative isolates were subjected to serial passage in vitro evolution experiments and fluctuation assays. Results confirm that the insertion of the IS26 element upstream of blaSHV is positively correlated with the ability to exhibit an ESBL phenotype, when such isolates also contain the critical G238S substitution. It was also found that IS26 can catalyse the duplication and mobilisation of blaSHV within an isolate. Fluctuation experiments have shown that the frequency at which such genomic events occur resulting in ESBL phenotypes is extremely low and requires many generations of selection under sub-lethal conditions. A survey of a geographically diverse set of isolates has shown that IS26-blaSHV was found in all of the bacterial populations surveyed. However, it does not appear to be exclusively associated with SHV-mediated ESBL production.
7

SimAffling um ambiente computacional para suporte e simulação do processo de DNA shuffling

Cheung, Luciana Montera 06 November 2008 (has links)
Made available in DSpace on 2016-06-02T19:02:39Z (GMT). No. of bitstreams: 1 2372.pdf: 3456814 bytes, checksum: 7894f1e8062bb948621e2d222d01e3b0 (MD5) Previous issue date: 2008-11-06 / Financiadora de Estudos e Projetos / The Molecular Evolution of the living organisms is a slow process that occurs over the years producing mutations and recombinations at the genetic material, i.e. at the DNA. The mutations can occur as nucleotide remotion, insertion and/or substitution at the DNA chain. The Directed Molecular Evolution is an in vitro process that tries to improve biological functions of specific molecules producing mutations at the molecule s genetic material, mimicking the natural process of evolution. Many technics that simulate in vitro molecular evolution, among them the DNA shuffling, have been used aiming to improve specific properties of a variety of commercially important products as pharmaceutical proteins, vaccines and enzymes used in industries. The original DNA shuffling methodology can be sumarized by the following steps: 1) selection of the parental sequences; 2) random fragmentation of the parental sequences by an enzyme; 3) repeated cycles of PCR (Polymerase Chain Reaction), in order to reassemble the DNA fragments produced in the previous step; 4) PCR amplification of the reassembled sequences obtained in step 3). The DNA shuffling technic success can be measured by the number of recombinat molecules found at the DNA shuffling library obtained, since these recombinant molecules potentially have improved functionalities in relation to their parent since their sequence may accumulate beneficial mutations originated from distinct parent sequences. Nowadays some few models can be found in the literature whose purpose is to suggest optimization to this process aiming the increase of the genetic diversity of the DNA shuffling library obtained. This research work presents a comparative study of four models used to predict/estimate the DNA shuffling results. In addition a computational tool for simulating the DNA shuffling proccess is proposed and implemented in an environment where other functionalities related to the analyses of the parental sequences and the resulting sequences from the DNA shuffling library is also implemented. / A Evolução Molecular dos organismos vivos é um processo lento que ocorre ao longo dos anos e diz respeito às mutações e recombinações sofridas por um determinado organismo em seu material genético, ou seja, em seu DNA. As mutações ocorrem na forma de remoções, inserções e/ou substituições de nucleotídeos ao logo da cadeia de DNA. A Evolução Molecular Direta é um processo laboratorial, ou seja, in vitro, que visa melhorar funções biológicas específicas de moléculas por meio de mutações/recombinações em seu material genético, imitando o processo natural de evolução. Diversas técnicas que simulam a evolução molecular em laboratório, entre elas a técnica de DNA shuffling, têm sido amplamente utilizadas na tentativa de melhorar determinadas propriedades de uma variedade de produtos comercialmente importantes como vacinas, enzimas industriais e substâncias de interesse famacológico. A metodologia original de DNA shuffling pode ser sumarizada pelas seguintes etapas: 1) seleção dos genes de interesse, dito parentais; 2) fragmentação enzimática dos genes; 3) ciclos de PCR (Polymerase Chain Reaction), para que ocorra a remontagem dos fragmentos; 4) amplificação das seqüências remontadas cujo tamanho é igual a dos parentais. O sucesso ou não da técnica de DNA shuffling pode ser medido pelo número de moléculas recombinantes encontradas na biblioteca de DNA shuffling obtida, uma vez que estas podem apresentar melhorias funcionais em relação aos parentais pelo fato de, possivelmente, acumularem em sua seqüência mutações benéficas presentes em parentais distintos. Atualmente podem ser encontradas na literatura algumas poucas modelagens computacionais capazes de sugerir otimizações para o processo, com vistas em aumentar a diversidade genética da biblioteca resultante. O presente trabalho apresenta um estudo comparativo de quatros modelos para predição/estimativa de resultados de experimentos de DNA shuffling encontrados na literatura bem como a proposta e implementação de uma ferramenta computacional de simulação para o processo de DNA shuffling. A ferramenta de simulação foi implementada em um ambiente que disponibiliza outras funcionalidades referentes à análise das seqüências a serem submetidas ao shuffling bem como ferramentas para análise das seqüências resultantes do processo.
8

Vývoj instrumentace a metod s vysokou propustností pro hledání a validaci peptidových ligandů / Development of instrumentation and high-throughput screening methods for peptide ligand discovery and validation

Kryštůfek, Robin January 2021 (has links)
Peptides are used as synthetically available and easily derivatizable scaffold upon which it is possible to develop ligands targeting broad spectrum of biological targets. A time-tested approach to peptide binder identification is the preparation and screening of combinatorial libraries. Bypassing of this complicated procedure is possible by using biological systems for presentation, identification and selection of peptides based on the principle of in vitro evolution - i.e. display techniques. There are two complementary automated solutions for peptide binder identification described in this work. First is the SPENSER parallel peptide synthesizer, developed as a part of this diploma project, which can be used for peptide ligand discovery and optimization as well as validation of ligands identified using display techniques. Several libraries consisting of a total of 1 052 peptides have been prepared and then used to describe its potential applications. A sample of 154 preparations, representing 14.6 % analytical coverage of the prepared libraries, showed an average purity of 67 ± 19 % according to LC-MS. The libraries presented illustrate that SPENSER is a suitable tool for the parallel synthesis of linear and disulfide-cyclized peptides with limited variability, or libraries consisting of short...
9

Selection of multivalent DNA-based binders for norovirus / Selektion av multivalenta DNA-baserade bindare till norovirus

Dahl, Julia January 2024 (has links)
Aptamerer är nukleinsyra-baserade molekyler som binder specifikt till en målstruktur. Aptamerer har flera fördelar över antikroppar, så som snabb och billig framtagning och produktion. Multimera aptamer-baserade strukturer har visats ge bättre resultat än monomera aptamerer, men framtagningen av sådana strukturer är tidskrävande och icke-skalbar. Denna studie utforskar generering och selektion av multimera aptamer-baserade strukturer genom slumpmässig ligering och in vitro-evolution, med virusliknande partiklar av norovirus GII.2 och GII.4 som målstruktur. Optimering av ligeringsförhållanden visade att en större andel aptamerer, flerarmade fragment, och linjära fragment resulterade i störst diversitet i den ursprungliga strukturblandingen. Selektionsexperiment uppvisade kraftig positiv selektion för strukturer innehållande aptameren Buf-2, vilket indikerar att den har hög affinitet för båda genotyper. Aptameren SMV21 uppvisade också positiv selektion för båda genotyper. Studien finner också positiv selektion av multimera aptamer-baserade strukturer, vilket bekräftar att de binder starkare till sin målstruktur. Potentiella sekvenser med hög affinitet togs fram genom att generera konsensus-sekvenser från sekvenseringsdatan av de selekterade strukturerna. SPR användes för att mäta affiniteten av de selekterade strukturerna till norovirus, men på grund av ospecifik binding kunde inga slutsatser dras. / Aptamers are nucleic acid-based targeted binders that hold advantages over antibodies, such as cheap and fast development and production. Multimeric aptamer-based structures have shown improved performance compared to monomeric aptamers, but the development of such structures is time-consuming and unscalable. This study explores the generation and selection of multimeric aptamer-based structures through random ligation and in vitro evolution, targeting norovirus GII.2 and GII.4. Optimization of ligation conditions was performed, revealing that a bigger proportion of aptamers, multi-armed fragments, and linear fragments ensures a diverse initial structure pool. Selection experiments demonstrated a strong positive selection for structures containing the Buf-2 aptamer, indicating its high affinity for both norovirus genotypes. The SMV21 aptamer also showed positive selection for both genotypes. The study further found that multimeric aptamer-based structures experience positive selection, confirming their stronger binding to the desired target. Potential strong-binding sequences were obtained by generating consensus sequences from sequencing data of the selected strong binders. SPR was employed to determine the affinity of the selected binders to the norovirus, but the results were inconclusive due to unspecific binding.

Page generated in 0.0969 seconds