• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of Spleen-Induced Fimbria Production in Recombinant Attenuated Salmonella enterica Serovar Typhimurium Vaccine Strains

Łaniewski, Paweł, Baek, Chang-Ho, Roland, Kenneth L., Curtiss, Roy 22 August 2017 (has links)
Salmonella enterica serovar Typhimurium genome encodes 13 fimbrial operons. Most of the fimbriae encoded by these operons are not produced under laboratory conditions but are likely to be synthesized in vivo. We used an in vivo expression technology (IVET) strategy to identify four fimbrial operons, agf, saf, sti, and stc that are expressed in the spleen. When any three of these operons were deleted, the strain retained wild-type virulence. However, when all four operons were deleted, the resulting strain was completely attenuated, indicating that these four fimbriae play functionally redundant roles critical for virulence. In mice, oral doses of as low as 1 x 10(5) CFU of the strain with four fimbrial operons deleted provided 100% protection against challenge with 1 x 10(9) CFU of wild-type S. Typhimurium. We also examined the possible effect of these fimbriae on the ability of a Salmonella vaccine strain to deliver a guest antigen. We modified one of our established attenuated vaccine strains, chi 9088, to delete three fimbrial operons while the fourth operon was constitutively expressed. Each derivative was modified to express the Streptococcus pneumoniae antigen PspA. Strains that constitutively expressed saf or stc elicited a strong Th1 response with significantly greater levels of anti-PspA serum IgG and greater protective efficacy than strains carrying saf or stc deletions. The isogenic strain in which all four operons were deleted generated the lowest anti-PspA levels and did not protect against challenge with virulent S. pneumoniae. Our results indicate that these fimbriae play important roles, as yet not understood, in Salmonella virulence and immunogenicity. IMPORTANCE Salmonella enterica is the leading cause of bacterial food-borne infection in the United States. S. Typhimurium is capable of producing up to 13 distinct surface structures called fimbriae that presumably mediate its adherence to surfaces. The roles of most of these fimbriae in disease are unknown. Identifying fimbriae produced during infection will provide important insights into how these bacterial structures contribute to disease and potentially induce protective immunity to Salmonella infection. We identified four fimbriae that are produced during infection. Deletion of all four of these fimbriae results in a significant reduction in virulence. We explored ways in which the expression of these fimbriae may be exploited for use in recombinant Salmonella vaccine strains and found that production of Saf and Stc fimbriae are important for generating a strong immune response against a vectored antigen. This work provides new insight into the role of fimbriae in disease and their potential for improving the efficacy of Salmonella-based vaccines.
2

Delineating Key Genetic Components On Linear Plasmid 36 That Contribute To Its Essential Role In Borrelia Burgdorferi Mammalian Infectivity.

Choudhury, Tisha 01 January 2013 (has links)
The spirochete Borrelia burgdorferi is the etiologic agent of Lyme disease. This pathogen has a complex enzootic life cycle that involves passage between the tick vector (Ixodes scapularis) and various vertebrate hosts with humans being inadvertent hosts. There is a pressing need to study the genetic aspects of the B. burgdorferi infectious cycle and particularly spirochete genes involved in mammalian infectivity so as to develop novel therapeutic and diagnostic strategies to combat Lyme disease. The B. burgdorferi genome is fragmented and comprised of a single 900 kb linear chromosome and multiple linear and circular plasmids. It has been observed that plasmids are lost during serial passage and manipulation in vitro and the loss of some of the plasmids has been shown to be related to the loss of infectivity and persistence in the host. One such plasmid is linear plasmid 36 (lp36). lp36 is approximately 36kb in size and carries 56 putative open reading frames a majority of which have no predicted function. B. burgdorferi lacking lp36 show no deficiency in survival in ticks; however, these mutant spirochetes are highly attenuated for mammalian infectivity. The genetic components of this plasmid that contribute to its function in mammalian infectivity have yet to be clearly defined. Using an in vivo expression technology (IVET) based genetic screen the lp36- encoded gene bbk46 was identified as a candidate B. burgdorferi gene that is expressed during mammalian infection. Herein we present evidence that bbk46 is required for B. burgdorferi persistent infection of immunocompetent mice. Our data iii support a molecular model of immune evasion by which bbk46 functions as an RNA to regulate expression of the antigenic variation protein VlsE. These data represent the first demonstration of a regulatory mechanism critical for controlling vlsE gene expression. Moreover these findings further define the critical role of linear plasmid 36 in Borrelia burgdorferi pathogenesis.
3

Helicobacter pylori colonization of the mouse gastric mucosa: the entner-doudoroff pathway and development of a promoter-trapping system

Wanken, Amy Elizabeth 16 October 2003 (has links)
No description available.
4

Exploration du potentiel probiotique de la bactérie lactique Streptococcus thermophilus : évalutation du potentiel probiotique et de sa variabilité : mise au point et validation de l'outil R-IVET (Recombinase based in vivo Expression Technology) pour l'étude de l'état physiologique de la bactérie dans le tractus gastro-intestinal / Exploring the probiotic potential of lactic acid bacterium Streptococcus thermophilus : Evaluation of probiotic potential and its variability, Optimization and validation of Recombinase based In vivo Expression Technology (R-IVET) to study the physiological state of the bacterium in the gastro-intestinal tract

Junjua, Maira 19 March 2013 (has links)
Streptococcus thermophilus est la bactérie lactique la plus utilisée après Lactococcus lactis dans l'industrie laitière pour la fabrication de yaourts et de fromages à pâte cuite (Emmental, gruyère), filée (Mozarella) ou pressée (Cheddar). Il s'agit du seul streptocoque à avoir le statut de bactérie GRAS (Generally Recognized As Safe). Dans un premier temps le potentiel probiotique de 30 souches de S. thermophilus de différentes origines a été testé par l'étude de leurs capacités à résister aux différentes conditions de stress rencontrées pendant leur passage dans le tractus gastro-intestinal (bas pH, sels biliaires et stress oxydant), de leur capacité à adhérer aux cellules épithéliales intestinales et de leurs propriétés immunomodulatrices. La majorité des souches réduit la production d'interleukine IL-8 (pro-inflammatoire) alors qu'elles induisent la production d'interleukine IL-10 (anti-inflammatoire) et l'IL-12 (pro-inflammatoire). Sur la base du rapport IL-10/IL-12, qui permet d'apprécier le potentiel anti-inflammatoire d'une souche, nous avons observé que certaines d'entre-elles pourraient avoir un fort potentiel anti-inflammatoire. L'Analyse en Composantes Principales (ACP) nous a permis de séparer les souches en 6 catégories différentes présentant des propriétés distinctes. A l'intérieur de chaque classe, une variabilité entre les souches a été observée et des caractéristiques intéressantes identifiées. Cependant, aucune des classes ne peut être considérée comme contenant le probiotique « parfait ». Suite à cette étude et sur la base de sa résistance aux stress gastriques et de ses capacités d'adhésion, et sachant que la séquence de son génome est disponible, la souche LMD-9 a été sélectionnée pour la deuxième partie de ce travail, à savoir la construction d'un outil basé sur la technologie R-IVET pour étudier l'état physiologique de S. thermophilus dans le tractus digestif. L'outil R-IVET mis au point se compose de deux éléments: un vecteur plasmidique portant le gène cre codant une recombinase spécifique dépourvu de son promoteur et une cassette chromosomique composée d'un gène de résistance à la spectinomycine flanqué par des sites loxP, reconnus par la recombinase Cre. La fonctionnalité de l'outil R-IVET a ensuite été testée par le clonage de trois promoteurs différents de S. thermophilus (PprtS, Pshsp and Plac) en amont de cre. Le système a été valide in vitro avec les trois promoteurs et in vivo avec le promoteur Plac / Streptococcus thermophilus is a lactic acid bacterium used after Lactococcus lactis in the dairy industry for the production of yogurt and cheeses like Emmental, Gruyere, Mozarella and Cheddar. It is the only streptococcus to have the GRAS (Generally Recognized As Safe) status. In this work, the probiotic potential of 30 S. thermophilus strains from different origins was tested by studying their ability to resist different stress conditions encountered during their passage through the GIT (low pH, bile salts and oxidative stress), their ability to adhere to intestinal epithelial cells and their immunomodulatory properties. Majority of the strains reduced the production of interleukin IL-8 (pro-inflammatory) and induced the production of interleukin IL-10 (anti-inflammatory) and IL-12 (pro-inflammatory). On the basis of the ratio IL-10/IL-12 which allows to evaluate the anti-inflammatory potential of a probiotic, several strains appeared to have a high the anti-inflammatory potential. Principal Component Analysis (PCA) allowed us to classify strains in 6 different categories with different properties. Within each class, variability and interesting features were observed, but none of the classes could be considered as containing the perfect probiotic. Following this study and on the basis of its resistance to gastric stress and its adhesion capacity and knowing that its genome sequence is available, the strain LMD-9 was selected for the second part of this work, namely the construction of a tool based on R-IVET to study the physiological state of S. thermophilus in the digestive tract. This tool is composed of two elements: a plasmid vector (pULNcreB), carrying the gene cre encoding a site-specific recombinase without its promoter and a chromosomal cassette composed of a gene of resistance to spectinomycin flanked by loxP sites which are recognized by the recombinase Cre. The functionality of the tool R-IVET was then tested by cloning three different promoters of S. thermophilus (PprtS, Pshsp and Plac) upstream of cre. System was valid in vitro with all the three promoters and in vivo by using the lactose operon promoter Plac

Page generated in 0.0869 seconds