• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solid phase microextraction for in vivo determination of pharmaceuticals in fish and wastewater

Togunde, Oluranti Paul January 2012 (has links)
This thesis describes the development and application of solid phase microextraction (SPME) as a sample preparation technique for in vivo determination of pharmaceutical residues in fish tissue and wastewater. The occurrence, distribution and fate of pharmaceuticals in the environment are a subject of concern across the globe due to the impact they may have on human life and aquatic organisms. To address this challenge from an analytical perspective, a simplified and reliable analytical methodology is required to investigate and determine the concentration (bioconcentration factors) of trace pharmaceutical residue in fish tissue and environmental water samples (exposure). An improved SPME method, coupled with liquid chromatography with tandem mass spectrometry has been developed and applied to both controlled laboratory and field-caged fish exposed to wastewater effluent for quantitative determination of pharmaceutical residue in fish specific tissue. A new SPME configuration based on C18 thin film (blade) was developed and optimized to improve SPME sensitivity for in vivo determinations of trace pharmaceuticals in live fish. The C18 thin film extraction phase successfully quantified bioconcentrated fluoxetine, venlafaxine, sertraline, paroxetine, and carbamazapine in the dorsal-epaxial muscle of living fish at concentrations ranging from 1.7 to 259 ng/g. The reproducibility of the method in spiked fish muscle was 9-18% RSD with limits of detection and quantification ranging from 0.08 - 0.21 ng/g and 0.09 - 0.64 ng/g (respectively) for the analytes examined. Fish were sampled by in vivo SPME for 30 min to detect pharmaceutical uptake and bioconcentration, with experimental extracts analyzed using liquid chromatography coupled with tandem mass spectrometry. In addition, a simplified analytical methodology based on SPME was developed and optimized for determination and bioconcentration factor of different classes of pharmaceuticals residues in fish bile. The reproducibility of the method in spiked fish Rainbow Trout bile was 3-7% RSD with limits of detection (LOD) ranging from 0.3 – 1.4 ng/mL for the analytes examined. The field application of SPME sampling was further demonstrated in Fathead Minnow (Pimephales promelas), a small-bodied fish caged upstream and downstream of a local wastewater treatment plant where fluoxetine, atorvastatin, and sertraline were detected in fish bile at the downstream location. Also, a simple automated analytical method using high throughput robotic system was developed for the simultaneous extraction of pharmaceutical compounds detected in surface waters. The proposed method successfully determined concentrations of carbamazepine, fluoxetine, sertraline, and paroxetine in treated effluent at concentrations ranging from 240 - 3820 ng/L with a method detection limit of 2-13 ng/L, and a relative standard deviation of less than 16%. Application of the method was demonstrated using wastewater from pilot-scale municipal treatment plants and environmental water samples from wastewater-dominated reaches of the Grand River (Waterloo, ON). Finally, 4 and 8-d laboratory exposures were carried out with Rainbow Trout exposed to wastewater effluent collected from pilot scale at Burlington, ON. Additionally, wild fish, White Sucker (Catostomus commersonii) were collected and sampled from Waterloo and Kitchener downstreams containing local municipal effluent. Bioconcentration factors of the selected compounds were determined in both fish muscle and bile samples. The results show that anti-depressant drugs such fluoxetine, sertraline and paroxetine were uptake in the fish muscle and fish bile for both laboratory and field exposure. In summary, exposure of fish to micro-pollutants such as pharmaceuticals may be monitored through the analysis of bile, particularly at low concentration exposure of pharmaceuticals, where the sensitivity of analytical method may be challenged. SPME is a promising simple analytical tool which can potentially be used for monitoring of pharmaceuticals in fish tissue and wastewater.
2

Solid phase microextraction for in vivo determination of pharmaceuticals in fish and wastewater

Togunde, Oluranti Paul January 2012 (has links)
This thesis describes the development and application of solid phase microextraction (SPME) as a sample preparation technique for in vivo determination of pharmaceutical residues in fish tissue and wastewater. The occurrence, distribution and fate of pharmaceuticals in the environment are a subject of concern across the globe due to the impact they may have on human life and aquatic organisms. To address this challenge from an analytical perspective, a simplified and reliable analytical methodology is required to investigate and determine the concentration (bioconcentration factors) of trace pharmaceutical residue in fish tissue and environmental water samples (exposure). An improved SPME method, coupled with liquid chromatography with tandem mass spectrometry has been developed and applied to both controlled laboratory and field-caged fish exposed to wastewater effluent for quantitative determination of pharmaceutical residue in fish specific tissue. A new SPME configuration based on C18 thin film (blade) was developed and optimized to improve SPME sensitivity for in vivo determinations of trace pharmaceuticals in live fish. The C18 thin film extraction phase successfully quantified bioconcentrated fluoxetine, venlafaxine, sertraline, paroxetine, and carbamazapine in the dorsal-epaxial muscle of living fish at concentrations ranging from 1.7 to 259 ng/g. The reproducibility of the method in spiked fish muscle was 9-18% RSD with limits of detection and quantification ranging from 0.08 - 0.21 ng/g and 0.09 - 0.64 ng/g (respectively) for the analytes examined. Fish were sampled by in vivo SPME for 30 min to detect pharmaceutical uptake and bioconcentration, with experimental extracts analyzed using liquid chromatography coupled with tandem mass spectrometry. In addition, a simplified analytical methodology based on SPME was developed and optimized for determination and bioconcentration factor of different classes of pharmaceuticals residues in fish bile. The reproducibility of the method in spiked fish Rainbow Trout bile was 3-7% RSD with limits of detection (LOD) ranging from 0.3 – 1.4 ng/mL for the analytes examined. The field application of SPME sampling was further demonstrated in Fathead Minnow (Pimephales promelas), a small-bodied fish caged upstream and downstream of a local wastewater treatment plant where fluoxetine, atorvastatin, and sertraline were detected in fish bile at the downstream location. Also, a simple automated analytical method using high throughput robotic system was developed for the simultaneous extraction of pharmaceutical compounds detected in surface waters. The proposed method successfully determined concentrations of carbamazepine, fluoxetine, sertraline, and paroxetine in treated effluent at concentrations ranging from 240 - 3820 ng/L with a method detection limit of 2-13 ng/L, and a relative standard deviation of less than 16%. Application of the method was demonstrated using wastewater from pilot-scale municipal treatment plants and environmental water samples from wastewater-dominated reaches of the Grand River (Waterloo, ON). Finally, 4 and 8-d laboratory exposures were carried out with Rainbow Trout exposed to wastewater effluent collected from pilot scale at Burlington, ON. Additionally, wild fish, White Sucker (Catostomus commersonii) were collected and sampled from Waterloo and Kitchener downstreams containing local municipal effluent. Bioconcentration factors of the selected compounds were determined in both fish muscle and bile samples. The results show that anti-depressant drugs such fluoxetine, sertraline and paroxetine were uptake in the fish muscle and fish bile for both laboratory and field exposure. In summary, exposure of fish to micro-pollutants such as pharmaceuticals may be monitored through the analysis of bile, particularly at low concentration exposure of pharmaceuticals, where the sensitivity of analytical method may be challenged. SPME is a promising simple analytical tool which can potentially be used for monitoring of pharmaceuticals in fish tissue and wastewater.
3

Solid-phase microextraction as sample preparation method for metabolomics

Vuckovic, Dajana January 2010 (has links)
The main objective of the emerging field of metabolomics is the analysis of all small molecule metabolites present in a particular living system in order to provide better understanding of dynamic processes occurring in living systems. This type of studies is of interest in various fields including systems biology, medicine and drug discovery. The main requirements for sample preparation methods used in global metabolomic studies are lack of selectivity, incorporation of a metabolism quenching step and good reproducibility. The efficiency of metabolism quenching and stability of analytes in selected biofluid or tissue dictate how accurately the analytical results represent true metabolome composition at the time of sampling. However, complete quenching of metabolism is not easily accomplished, so sample preparation can significantly affect metabolome's composition and the quality of acquired metabolomics data. In this research, the feasibility of the use of solid-phase microextraction (SPME) in direct extraction mode for global metabolomic studies of biological fluids based on liquid chromatography-mass spectrometry (LC-MS) was investigated for the first time. Initial research presented in this thesis focused on resolving several outstanding issues regarding the use of SPME for the analysis of biological fluids. SPME was not simultaneously capable to provide high-sample throughput and high degree of automation when coupled to LC-MS. This was successfully addressed through the development and evaluation of a new robotic station based on a 96-well plate format and an array of 96 SPME fibres. The parallel format of extraction and desorption allowed increased sample throughput of >1000 samples/day which represents the highest throughput of any SPME technique to date. This exceeds sample throughput requirements for a typical metabolomics study whereby ~100 samples/day are processed. SPME can also be used for direct in vivo sampling of flowing blood of an animal without the need to isolate a defined sample volume. This format of SPME is particularly attractive for metabolomic studies as it decreases the overall number of steps and also eliminates the need for metabolism quenching step because only small molecular weight species are extracted by the device, whereas large biological macromolecules such as proteins are not extracted by the coating. In current work, in vivo SPME sampling was successfully applied for sampling of mice for the first time. The proposed sampling procedure was fully validated against traditional terminal and serial sampling approaches for a pharmacokinetic study of carbamazepine and its metabolite. Excellent agreement of pharmacokinetic parameters such as systemic clearance, steady-state volume of distribution and terminal half-life was found for all three methods, with no statistically significant differences (p>0.05). The performance of new prototype commercial SPME devices based on hypodermic needle was also evaluated within the context of the study. The availability of such single-use devices with excellent inter-fibre reproducibility (<10% RSD) presents an important step forward in order to gain wider acceptance of in vivo SPME sampling. Finally, existing SPME coatings were not suitable for the simultaneous direct extraction of both hydrophilic and hydrophobic species, which is one of the requirements for a successful global metabolomics study. To address this issue, a systematic study of 40 types of commercially available sorbents was carried out using a metabolite standard test mixture spanning a wide molecular weight (80-777 Da) and polarity range (log P range of -5 to 7.4). The best performance for balanced extraction of species of varying polarity was achieved by (i) mixed-mode coating containing octadecyl or octyl group and benzenesulfonic acid ion exchange group, (ii) polar-enhanced polystyrene-divinylbenzene polymeric coatings and (iii) phenylboronic acid coatings. The second aspect of the research focused on the evaluation of SPME for a global metabolomics study of human plasma using two complementary LC-MS methods developed on benchtop Orbitrap MS system: reverse-phase method using pentafluorophenyl LC stationary phase and HILIC method using underivatized silica stationary phase. The parameters influencing overall method sensitivity such as voltages, mass ranges and ion inject times into C-trap were optimized to ensure best instrument performance for global metabolomic studies. Orbitrap system provided a powerful platform for metabolomics because of its high resolution and mass accuracy, thus helping to distinguish between metabolites with same nominal mass. The acquisition speed of the instrument at the highest resolution setting was insufficient for use with ultrahigh performance liquid chromatography (UHPLC), so all methods were developed using conventional LC. However, overall metabolite coverage achieved in current study compared well or even exceeded metabolite coverage reported in literature on different LC-MS or UHPLC-MS platforms including time-of-flight, quadrupole time-of-flight and hybrid Orbitrap instruments. The performance of SPME was fully compared versus traditional methods for global metabolomics (plasma protein precipitation and ultrafiltration). The main findings of this systematic study show that SPME provides improved coverage of hydrophobic metabolites versus ultrafiltration and reduces ionization suppression effects observed with both plasma protein precipitation and ultrafiltration methods. Using SPME, <5% and <20% of peaks showed significant matrix effects in reverse phase and HILIC methods, respectively and the observed effects were mostly correlated to elution within retention time window of anticoagulant for the majority of metabolites showing this effect. This improves overall quality of collected metabolomics data and can also improve metabolite coverage. For example, the highest number of metabolite features (3320 features) was observed using SPME in combination with negative ESI reverse-phase LC method, while in positive ESI mode plasma protein precipitation with methanol/ethanol mixture provided the most comprehensive metabolite coverage (3245 features versus 1821 features observed for SPME). Method precision of SPME method was excellent as evaluated using median RSD (11-18% RSD) of all metabolites detected. A proof-of-concept in vivo SPME study was also performed on mice to study the effects of carbamazepine administration and shows that SPME can be used as successful sample preparation method for global metabolomic studies in combination with unsupervised statistical data analysis techniques. This study highlights important advantages of in vivo sampling approaches including the ability to capture short-lived and/or unstable metabolites, to achieve truer representation of the metabolome at the time of sampling than achievable by blood withdrawal methods and the ability to use smaller animal cohorts while obtaining highly-relevant data sets. The experimental results provide new and useful insight into the effects of different sample preparation methods on the collected metabolomics data, and establish both in vitro and in vivo SPME as a new tool for global LC-MS metabolomics analysis for the first time.
4

Solid-phase microextraction as sample preparation method for metabolomics

Vuckovic, Dajana January 2010 (has links)
The main objective of the emerging field of metabolomics is the analysis of all small molecule metabolites present in a particular living system in order to provide better understanding of dynamic processes occurring in living systems. This type of studies is of interest in various fields including systems biology, medicine and drug discovery. The main requirements for sample preparation methods used in global metabolomic studies are lack of selectivity, incorporation of a metabolism quenching step and good reproducibility. The efficiency of metabolism quenching and stability of analytes in selected biofluid or tissue dictate how accurately the analytical results represent true metabolome composition at the time of sampling. However, complete quenching of metabolism is not easily accomplished, so sample preparation can significantly affect metabolome's composition and the quality of acquired metabolomics data. In this research, the feasibility of the use of solid-phase microextraction (SPME) in direct extraction mode for global metabolomic studies of biological fluids based on liquid chromatography-mass spectrometry (LC-MS) was investigated for the first time. Initial research presented in this thesis focused on resolving several outstanding issues regarding the use of SPME for the analysis of biological fluids. SPME was not simultaneously capable to provide high-sample throughput and high degree of automation when coupled to LC-MS. This was successfully addressed through the development and evaluation of a new robotic station based on a 96-well plate format and an array of 96 SPME fibres. The parallel format of extraction and desorption allowed increased sample throughput of >1000 samples/day which represents the highest throughput of any SPME technique to date. This exceeds sample throughput requirements for a typical metabolomics study whereby ~100 samples/day are processed. SPME can also be used for direct in vivo sampling of flowing blood of an animal without the need to isolate a defined sample volume. This format of SPME is particularly attractive for metabolomic studies as it decreases the overall number of steps and also eliminates the need for metabolism quenching step because only small molecular weight species are extracted by the device, whereas large biological macromolecules such as proteins are not extracted by the coating. In current work, in vivo SPME sampling was successfully applied for sampling of mice for the first time. The proposed sampling procedure was fully validated against traditional terminal and serial sampling approaches for a pharmacokinetic study of carbamazepine and its metabolite. Excellent agreement of pharmacokinetic parameters such as systemic clearance, steady-state volume of distribution and terminal half-life was found for all three methods, with no statistically significant differences (p>0.05). The performance of new prototype commercial SPME devices based on hypodermic needle was also evaluated within the context of the study. The availability of such single-use devices with excellent inter-fibre reproducibility (<10% RSD) presents an important step forward in order to gain wider acceptance of in vivo SPME sampling. Finally, existing SPME coatings were not suitable for the simultaneous direct extraction of both hydrophilic and hydrophobic species, which is one of the requirements for a successful global metabolomics study. To address this issue, a systematic study of 40 types of commercially available sorbents was carried out using a metabolite standard test mixture spanning a wide molecular weight (80-777 Da) and polarity range (log P range of -5 to 7.4). The best performance for balanced extraction of species of varying polarity was achieved by (i) mixed-mode coating containing octadecyl or octyl group and benzenesulfonic acid ion exchange group, (ii) polar-enhanced polystyrene-divinylbenzene polymeric coatings and (iii) phenylboronic acid coatings. The second aspect of the research focused on the evaluation of SPME for a global metabolomics study of human plasma using two complementary LC-MS methods developed on benchtop Orbitrap MS system: reverse-phase method using pentafluorophenyl LC stationary phase and HILIC method using underivatized silica stationary phase. The parameters influencing overall method sensitivity such as voltages, mass ranges and ion inject times into C-trap were optimized to ensure best instrument performance for global metabolomic studies. Orbitrap system provided a powerful platform for metabolomics because of its high resolution and mass accuracy, thus helping to distinguish between metabolites with same nominal mass. The acquisition speed of the instrument at the highest resolution setting was insufficient for use with ultrahigh performance liquid chromatography (UHPLC), so all methods were developed using conventional LC. However, overall metabolite coverage achieved in current study compared well or even exceeded metabolite coverage reported in literature on different LC-MS or UHPLC-MS platforms including time-of-flight, quadrupole time-of-flight and hybrid Orbitrap instruments. The performance of SPME was fully compared versus traditional methods for global metabolomics (plasma protein precipitation and ultrafiltration). The main findings of this systematic study show that SPME provides improved coverage of hydrophobic metabolites versus ultrafiltration and reduces ionization suppression effects observed with both plasma protein precipitation and ultrafiltration methods. Using SPME, <5% and <20% of peaks showed significant matrix effects in reverse phase and HILIC methods, respectively and the observed effects were mostly correlated to elution within retention time window of anticoagulant for the majority of metabolites showing this effect. This improves overall quality of collected metabolomics data and can also improve metabolite coverage. For example, the highest number of metabolite features (3320 features) was observed using SPME in combination with negative ESI reverse-phase LC method, while in positive ESI mode plasma protein precipitation with methanol/ethanol mixture provided the most comprehensive metabolite coverage (3245 features versus 1821 features observed for SPME). Method precision of SPME method was excellent as evaluated using median RSD (11-18% RSD) of all metabolites detected. A proof-of-concept in vivo SPME study was also performed on mice to study the effects of carbamazepine administration and shows that SPME can be used as successful sample preparation method for global metabolomic studies in combination with unsupervised statistical data analysis techniques. This study highlights important advantages of in vivo sampling approaches including the ability to capture short-lived and/or unstable metabolites, to achieve truer representation of the metabolome at the time of sampling than achievable by blood withdrawal methods and the ability to use smaller animal cohorts while obtaining highly-relevant data sets. The experimental results provide new and useful insight into the effects of different sample preparation methods on the collected metabolomics data, and establish both in vitro and in vivo SPME as a new tool for global LC-MS metabolomics analysis for the first time.

Page generated in 0.1157 seconds