• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1598
  • 689
  • 348
  • 186
  • 180
  • 93
  • 71
  • 54
  • 46
  • 32
  • 19
  • 18
  • 11
  • 10
  • 7
  • Tagged with
  • 3972
  • 574
  • 489
  • 467
  • 464
  • 428
  • 404
  • 399
  • 370
  • 360
  • 330
  • 315
  • 311
  • 306
  • 306
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1151

Next generation mid-wave infrared cascaded light emitting diodes: growth of broadband, multispectral, and single color devices on GaAs and integrated circuits

Provence, Sydney R. 01 August 2016 (has links)
InAs/GaSb superlattices are an attractive material system for infrared light emitting diodes, due to the ability to tune the band gap throughout most of the infrared regime. A key consideration in the epitaxial growth of these heterostructures is crystalline material quality. In developing thick layers of epitaxially grown material, there are moderate amounts of elastic strain that can be incorporated into a heterostructure, beyond which deformations will form that will alleviate the lattice mismatch. This thesis investigates the optical and electronic properties of lattice-mismatched and strained materials through the study of thick dual-color light emitting diodes, broadband light emitting diodes, and InAs/GaSb superlattice devices developed on GaAs substrates and GaAs integrated circuits. A dual-color infrared light emitting diode is demonstrated emitting in the mid-wave infrared band at 3.81 μm and 4.72 μm. The design of the device stacks two independently operable InAs/GaSb superlattices structures on top of one another, so that 10 μm of material is grown with molecular beam epitaxy. Each layer is lattice-matched to a GaSb substrate. At quasi-continuous operation, radiances of 5.48 W/cm2-sr and 2.67 W/cm2-sr are obtained. A broadband light emitting diode spanning the mid-wave infrared is demonstrated with eight stages of InAs/GaSb superlattices individually tuned to a different color. The performance of the device is compared with an identical eight stage device emitting in the middle of the mid-wave infrared. The emission of the fabricated broadband device spans from 3.2 μm to 6 μm with peak radiance of 137.1 mW/cm2-sr. Growth of antimonide-based devices on GaAs is desirable to the relative transparency of semi-insulating substrates throughout the infrared, and as semi-insulating GaSb substrates are not available. The growth of bulk GaSb on GaAs is explored through different techniques in order to confine relaxation due to lattice mismatch strain to the GaSb/GaAs interface. A low temperature nucleation technique with a thin GaSb wetting layer is found to have the best overall surface morphology, although screw dislocations are a prominent feature on all samples. The dislocations and overall surface roughness are not found to destructively impact the overall device quality, as four stage InAs/GaSb superlattice devices grown on GaAs substrates are found to have superior electroluminescent emission and external quantum efficiency compared to an identical device grown on a GaSb substrate due to the higher substrate transparency and superior thermal properties. Epitaxy on electronics growth techniques on GaAs integrated circuits are developed to bypass the hybridization process in light emitting diode development. Chips obtained from Quorvo, Inc. are found to endure ultra-high vacuum molecular beam epitaxy environment at higher temperatures with silicon nitride encapsulation, and a low temperature oxide removal technique is developed using an atomic hydrogen source. Chemical-mechanical polishing techniques are developed to create an “epi-ready” substrate surface. Ultimately, no photoluminescent emission is observed from InAs/GaSb superlattices grown on GaAs integrated circuits, although electroluminescent emission is still possible.
1152

Reliability of 3D-printed mandibles constructed from CBCT volumes of different voxel sizes

Vijayan, Suvendra 01 May 2018 (has links)
Objectives: The aim of the current study is to establish the reliability of linear cephalometric measurements made on mandibles and their respective 3D printed models created from different voxel resolutions from a cone beam CT machine. Materials and methods: Ten dry mandibles obtained from the Department of Oral Pathology, Radiology and Medicine at The University of Iowa College Of Dentistry were used for this study. All mandibles were scanned on the i-CAT FLX cone beam CT machine (Imaging Sciences International, LLC, Pennsylvania, USA) using voxel resolutions of .30mm, .25mm and .20 mm in a 16cm x 8cm field of view using 360° rotation. The 3D models were reconstructed and saved as .STL files using 3D Slicer software and send to a 3D printer for printing. Two observers measured the 10 mandibles and 30 3D printed models. The measurement were repeated on 50% of the samples after at least one week interval. Cronbach’s alpha and intraclass correlation coefficient were calculated to measure reliability. Results: Good to excellent interobserver and intraobserver reliability was achieved across most of the measurements. There was no difference in reliability across models made from different voxel sizes. Conclusion: The current study successfully showed that the reliability of measurements made on 3D printed models of dry skull mandibles created using fused deposition modeling technique using images of different voxel sizes from an i-CAT FLX CBCT machine are valid, reproducible, and reliable and can be used for diagnostic and clinical purposes.
1153

Towards 4D MVCBCT for lung tumor treatment

Chen, Mingqing 01 July 2012 (has links)
Currently in our clinic, a mega-voltage cone beam computed tomography (MVCBCT) scan is performed before each treatment for patient localization. For non-small cell lung cancer (NSCLC) patients, a strain gauge is used as an external surrogate to indicate tumor motion in both the planning stage and the treatment stage. However, it is likely that the amplitude of tumor motion varies between treatment fractions without a corresponding change in the surrogate signal. Motion amplitude larger than what was planned may underdose the tumor and overexpose normal tissues. The overall objective of this project is to extend the capabilities of MVCBCT for respiratory motion management by taking advantage of 2D projection images. First, a new method was developed to detect ipsi-lateral hemi-diaphragm apex (IHDA) motion along superior-inferior (SI) direction in 3D. Then a respiratory correlated reconstruction method was implemented and verified. This method is able to create MVCBCT volume in the full exhale (FE) and the full inhale (FI) phases, respectively. The diaphragm to tumor motion ratio (DTMR) was derived by quantifying the absolute position of the tumor and IHDA in these two volumes. The DTMR and the extracted IHDA motion were further used to calibrate the strain gauge signal. Second, an organ motion detection approach was developed, in which the detection is converted into an optimal interrelated surface detection problem. The framework was first applied to tumor motion extraction, which enables accurate detection for large tumors (with a diameter not smaller than 1.9cm). The framework was then applied to lung motion extraction and the extracted lung motion model was used to create a series of displacement vector fields for a motion compensated (MC) reconstruction. The accuracy of both tumor extraction and the MC approach was validated, which shows their clinical feasibility. Last but not least, a novel enhancement framework was developed. The aim of this approach is to eliminate the overlapping tissues and organs in the CBCT projection images. Though scattering and noise is the major problem, the proposed method is able to achieve enhanced projection images with a higher contrast to noise ratio (CNR) without compromising detection accuracy on tumors and IHDA.
1154

Development and quantitative assessment of a beam hardening correction model for preclinical micro-CT

Mohapatra, Sucheta 01 December 2012 (has links)
The phenomenon of x-ray beam hardening (BH) has significant impact on preclinical micro-CT imaging systems. The causal factors are the polyenergetic nature of x-ray beam used for imaging and the energy dependence of linear attenuation coefficient of the imaged material. With increase in length of propagation of beam in the imaged object, lower energy photons in the projected beam become preferentially absorbed. The beam "hardens" (as average energy increases) and progressively becomes more penetrating, causing underestimation of the attenuation coefficient. When this phenomenon is not accounted for during CT reconstruction, it results in images with nonuniform CT number values across regions of uniform density. It leads to severe errors in quantitative applications of micro-CT and degradation in diagnostic quality of images. Hence, correction for beam hardening effect is of foremost importance and has been an active area of research since the advent of micro -CT. The Siemens Inveon micro-CT system uses a common linearization approach for BH correction. It provides a set of standard default coefficients to be applied during CT reconstruction. However, our initial experiments with uniform water phantoms of varying diameters indicated that the correction coefficients provided by default in the Inveon system are applicable for imaging mouse-size (~28 mm) objects only. For larger objects the correction factors yielded incorrect CT values along with characteristic 'cupping' observed in the uniform region in the center of the phantom. This study provides an insight into the nature and characteristics of beam hardening on the Inveon CT system using water phantoms of varying sizes. We develop and test a beam hardening correction scheme based on linearization using cylindrical water phantoms of two different diameters - 28 mm and 71 mm, selected to represent mouse and rat sizes respectively. The measured non-linear relationship between attenuation and length of propagation is fitted to a polynomial function, which is used to estimate the effective monoenergetic attenuation coefficient for water. The estimated effective linear attenuation coefficient value is used to generate the expected sum of attenuation coefficients along each x-ray path through the imaged object. The acquired poly-energetic data is then linearized to expected projections using a third order polynomial fit, which is consistent with the Inveon BH model and software. The coefficients of this trinomial are then applied for BH correction during CT reconstruction. Correction achieved with the proposed model demonstrates effective removal of the characteristic cupping artifact that was observed when default BHC coefficients were applied. In addition to water phantoms, we also test the effectiveness of the proposed scheme using solid cylindrical phantoms of three different densities and composition. The proposed method was also used to measure the BH effect for 12 different kVp/filtration combinations. By generating twelve distinct sets of BHC coefficients, for each setting, we achieve a significant expansion in the quantitative performance of the Inveon CT system.
1155

An Optical System to Transform the Output Beam of a Quantum Cascade Laser to be Uniform

Jacobson, Jordan M. 01 May 2016 (has links)
Quantum cascade lasers (QCLs) are a candidate for calibration sources in space-based remote sensing applications. However, the output beam from a QCL has some characteristics that are undesirable in a calibration source. The output beam from a QCL is polarized both temporally and spatially coherent, and has a non-uniform bivariate Gaussian profile. These characteristics need to be mitigated before QCLs can be used as calibration sources. This study presents the design and implementation of an optical system that manipulates the output beam from a QCL so that it is spatially and angularly uniform with reduced coherence and polarization.
1156

Adhesion of Germanium Electrode on Nickel Substrate for Lithium Ion Battery Applications

Jeyaranjan, Aadithya 23 March 2015 (has links)
Lithium ion batteries (LIBs) have gained increasing popularity due to their high potential, low self-discharge, zero priming and minimal memory effect. However, the emergence of electrical vehicles and hybrid electrical vehicles in the automobile industry, where LIBs are predominantly in use, instilled a need to improve LIB batteries by experimenting with new materials. Graphite, the commonly used anode material for LIBs suffers from low theoretical capacity (372 mA h g-1) and torpid rate performance. Germanium (Ge) seems to be a promising substitute of carbon due to its high theoretical capacity, high Li+ diffusivity and electrical conductivity. However, Ge undergoes large volumetric change (±370%). This causes deboning of the thin film Ge electrode from the substrate current collector, causing a rapid decrease in the electrolytic performance. The process of ion beam mixing claims to have overcome this problem. In our current study, the adhesion strength of Ge thin film over Nickel (Ni) substrate (with and without ion beam mixing) is being measured using nanoindentation and the superlayer indentation test. Nanoindentation is one of the popular techniques to measure the mechanical properties and adhesion of thin film coatings. In this technique, a very small indenter of a desired geometry indents the film/substrate pair and the work of adhesion is calculated by knowing the plastic depth of indentation and the radius of indentation. Superlayer indentation is analogous to normal indentation but with a highly stressed superlayer on top to restrict the out-of-plane displacements, it reduces the plastic pile up around the indenter tip. The results from our study strongly suggest the possibility of dramatically increasing the adhesion strength by ion bombardment, which can be achieved by atomic level intermixing of the film/substrate pair. These, in turn, suggest that Ge could be an effective successor to graphite in the near future.
1157

Avaliação das dimensões da nasofaringe através da tomografia computadorizada e pela rinomanometria anterior modificada em indivíduos com fissura labiopalatina submetidos à cirurgia ortognática / Evaluation of nasopharyngeal dimensions through computed tomography and modified anterior rhinomanometry in patients with cleft lip and palate submitted to orthognathic surgery

Medeiros, Maria Carolina Malta 01 March 2019 (has links)
As alterações volumétricas da cavidade oral, nasal e espaço faríngeo após a cirurgia ortognática, têm sido objetivo de muitos estudos, uma vez que, essas alterações dependem da direção e magnitude da movimentação dos segmentos ósseos, porém, poucos são os trabalhos que combinam os diferentes métodos para a avaliação da nasofaringe. O objetivo deste estudo foi correlacionar o espaço aéreo faríngeo em pacientes com fissura labiopalatina, submetidos à cirurgia ortognática com avanço de maxila e/ou recuo de mandíbula, por meio da análise do volume e área seccional mínima utilizando imagens de tomografia computadorizada de feixe cônico e pela rinomanometria anterior modificada (técnica fluxo-pressão) no pré e pós-operatório de um ano da cirurgia ortognática. Desse modo, a amostra foi composta por 41 indivíduos, que foram avaliados no pré-operatório e no pós-operatório, na qual, avaliou-se a área seccional mínima pela rinomanometria anterior modificada expressos em mm2 e pelas imagens de tomografia de feixe cônico, que foram importadas em DICOM e avaliadas pelo software Dolphin Imaging 11.0, obtendo os valores numéricos de volume (V), expressos em cm3, bem como a área seccional mínima, expressa em mm2. Notou-se que, em todas as variáveis, houve aumento médio dos valores no pós-operatório em relação ao pré-operatório. Além disso, notouse uma diferença estatisticamente significante ao comparar os resultados dos volumes e da área seccional mínima da área nasofaríngea no pré e pós-operatório pelo software Dolphin Imaging 11.0 ao aplicar o Teste de Wilcoxon. Observou-se também, o aumento discreto da área nasofaríngea avaliada pela rinomanometria, no préoperatório de 105,9 mm2 para 107,1 mm2 no pós-operatório, mas sem diferença estatisticamente significante com p=0,493 pelo Teste de Wilcoxon. E ao comparar a ASM pela TCFC (ASMD) e pela rinomanometria (notou-se diferença estatística (p= 0,033) pelo Teste de Wilcoxon. Por conseguinte, concluiu-se que, existe diferença estatisticamente significante entre a área seccional mínima obtida da TCFC com a rinomanometria pela técnica de fluxo-pressão. / The volumetric changes of the oral cavity, nasal cavity and pharyngeal space after orthognathic surgery have been the objective of many studies, since these alterations depend on the direction and magnitude of the movement of the bone segments, however, there are few studies that combine the different methods for evaluating the nasopharynx. The objective of this study was to correlate the pharyngeal air space in patients with cleft lip and palate submitted to orthognathic surgery with maxillary advancement and / or mandible retreatment, by means of volume analysis and minimum sectional area using conical beam computed tomography by modified anterior rhinomanometry (flow-pressure technique) in the pre- and postoperative year of orthognathic surgery. Thus, the sample consisted in 41 individuals, which were evaluated preoperatively and postoperatively, in which the minimum sectional area was determined by modified anterior rhinomanometry expressed in mm2 and by conical beam tomography images, which were imported into DICOM and evaluated by Dolphin Imaging 11.0 software, obtaining the numerical values of volume (V), expressed in cm3, as well as the minimum sectional area, expressed in mm2. It was observed that, in all variables, there was an average increase in postoperative values in relation to the preoperative period. In addition, a statistically significant difference was observed when comparing the results of the volumes and the minimum sectional area of the nasopharyngeal area in the pre and postoperative period by the Dolphin Imaging 11.0 software when applying the Wilcoxon Test. It was also observed a discrete increase in the nasopharyngeal area evaluated by rhinomanometry, in the preoperative period from 105.9 mm2 to 107.1 mm2 postoperatively, but without a statistically significant difference with p = 0.493 by the Wilcoxon test. When comparing ASM by CBCT (ASMD) and rhinomanometry (a statistical difference (p = 0.033) was noted by the Wilcoxon test. Therefore, it was concluded that there is a statistically significant difference between the minimum sectional area obtained from the CBCT with rhinomanometry.
1158

Fabrication and Characterization of Magnetic Nanostructures

Scott, Kevin 30 October 2014 (has links)
Magnetic permalloy nanostructures were fabricated onto a silicon wafer using electron beam lithography and a liftoff process. The lithography was performed with a Hitachi SU-70 SEM retrofitted with a Nabity NPGS lithography conversion kit. PMMA of 950kDa molecular weight was used as the photoresist. Features were either nanowires, nanodots, or elliptical or rectangular nanostructures. The nanowires had dimensions of 15µm x 200nm x 40nm, the nanodots had diameters of 145nm and thickness of 12nm, and the ellipses and rectangles had dimensions of 110nm x 50nm x 13nm. Characterization of the nanostructures was performed using the same Hitachi SEM as well as a Digital Instruments DI 3100 Nanoscope IIIa AFM used in magnetic force imaging mode. The SEM was used to measure lateral dimensions of the features and to capture images of features for proper documentation and for external simulation studies. The MFM was used to capture magnetic images of the samples to determine the magnetic state of the nanowires or arrays.
1159

High spin states in light Sn isotopes

Tacik, Roman. January 1980 (has links)
No description available.
1160

Deformation behaviour of diamond-like carbon coatings on silicon substrates

Haq, Ayesha Jabeen, Materials Science & Engineering, Faculty of Science, UNSW January 2008 (has links)
The deformation mechanisms operating in diamond-like carbon (DLC) coatings on (100) and (111) Si, has been investigated. The effect of coating thickness, indenter geometry, substrate orientation and deposition technique on the deformation of DLC coatings and the underlying substrate was studied by undertaking nanoindentation followed by subsurface microstructural characterization. Uncoated (111) Si was also investigated for comparison. The observed microstructural features were correlated to the indentation response of the coatings and compared with simulation studies, as well as observations on uncoated Si. In uncoated (111) Si, phase transformation was found to be responsible for the discontinuities in the load-displacement curves, similar to (100) Si. However, slip was activated on {311} planes instead of on {111} planes. Moreover, the density of defects was also significantly lower and their distribution asymmetric. The coatings were adherent, uniformly thick and completely amorphous. The load-displacement curves displayed several pop-ins and a pop-out, the indentation loads for the first pop-in and the pop-out depending primarily on the thickness of the coating. The coatings exhibited localized compressive deformation in the direction of loading without any through-thickness cracks. The extent of this localized deformation increased with indentation load. Hardness and thickness of the coatings and the geometry of the indenter influenced the magnitude of compressive strains. Harder and thinner coatings and a blunt indenter exhibited the minimum degree of deformation. Densification by rearrangement of molecules has been suggested as the mechanism responsible for plastic compression. At indentation loads corresponding to the first pop-in, (100) and (111) silicon substrates initially deformed by <111> and <311> slip respectively. Higher indentation loads caused phase transformation. Therefore, unlike in uncoated Si, dislocation nucleation in the Si substrate has been proposed as the mode responsible for the first pop-in. Subsequent pop-ins were attributed to further deformation by slip and twinning, phase transformation and extensive cracking (median and secondary cracks) of the substrate. The pop-out, however, was ascribed to phase transformation. Extensive deformation in the substrate, parallel to the interface, is attributed to the wider distribution of the stress brought about by the DLC coating. Good correlation was obtained between the nanoindentation response, microstructural features and simulation studies.

Page generated in 0.054 seconds