Spelling suggestions: "subject:"insitu chemical oxidation"" "subject:"in.situ chemical oxidation""
1 |
Coupling Permanganate Oxidation With Microbial Dechlorination of TetrachloroetheneSahl, Jason W., Munakata-Marr, Junko, Crimi, Michelle L., Siegrist, Robert L. 01 January 2007 (has links)
For sites contaminated with chloroethene non-aqueousphase liquids, designing a remediation system that couples in situ chemical oxidation (ISCO) with potassium permanganate (KMnO4) and microbial dechlorination may be complicated because of the potentially adverse effects of ISCO on anaerobic bioremediation processes. Therefore, one-dimensional column studies were conducted to understand the effect of permanganate oxidation on tetrachloroethene (PCE) dechlorination by the anaerobic mixed culture KB-1. Following the confirmation of PCE dechlorination, KMnO4 was applied to all columns at a range of concentrations and application velocities to simulate varied distances from oxidant injection. Immediately following oxidation, reductive dechlorination was inhibited; however, after passing several pore volumes of sterile growth medium through the columns after oxidation, a rebound of PCE dechlorination activity was observed in every inoculated column without the need to reinoculate. The volume of medium required for a rebound of dechlorination activity differed from 1.1 to 8.1 pore volumes (at a groundwater velocity of 4 cm/d), depending on the specific condition of oxidant application.
|
2 |
Evaluation of persulfate for the treatment of manufactured gas plant residualsMcIsaac, Angela January 2013 (has links)
The presence of coal tars in the subsurface associated with former manufactured gas plants (MGPs) offers a remediation challenge due to their complex chemical composition, dissolution behaviour and recalcitrant characteristics. A former MGP site in Clearwater Beach, Florida was characterized and bench-scale analyses were conducted to assess the potential for in situ chemical oxidation (ISCO) using persulfate to treat MGP residuals.
Completion of a conceptual site model identified a homogeneous, silty sand aquifer, with an average hydraulic conductivity of approximately 2.3x10-3 cm/s and a groundwater flow rate of 2 cm/day in the direction of S20°E. Six source zones, three near the water table and three in the deep aquifer were estimated to have a total volume of 108 m3. A multi-level well transect was installed to monitor concentrations of dissolved compounds and to estimate mass discharge downgradient of the source zones over time. On average, the morphology of the aqueous concentrations remained consistent with time. A total mass discharge across the transect of 94 mg/day was estimated for site-specific compounds.
Bench-scale tests were conducted on aquifer sediments and groundwater samples. The aquifer was determined to have a low buffering capacity, low chemical oxygen demand, and low natural oxidant interaction (NOI) with persulfate. Aqueous batch experiments identified the potential for iron (II) activated persulfate to reduce concentrations of BTEX and PAHs below method detection limits (MDLs). Unactivated persulfate was able to reduce BTEX concentrations to below MDLs after 14 days; however, the concentration of PAH compounds remained above MDLs after 14 days. Higher iron doses within the system were shown to be more effective in reducing BTEX and PAH compounds.
Column experiments designed to mimic site conditions were used to evaluate the feasibility of persulfate treatment on impacted sediments from the Clearwater site. Two sets of column experiments were conducted: one using unactivated persulfate followed by alkaline activated persulfate; and one using iron (II) activated persulfate. On average, unactivated persulfate was able to reduce BTEX and PAH aqueous effluent concentrations by > 75% and 40%, respectively, after a total dose of 60 g/g soil. Two additional doses of alkaline activated persulfate (total persulfate dose of ~80g/g soil) in these columns were able to further reduce effluent BTEX and PAH concentrations by > 90% and > 75%, respectively. Iron (II) activated persulfate reduced effluent BTEX concentrations by > 70% and PAHs by > 65% after a total dose of 35 g/g soil. Average reductions in mass for BTEX and PAH compounds were approximately of 48% and 26% respectively in the iron (II) activated persulfate columns, and 24% and 10%, respectively in the alkaline activated persulfate columns.
The potential for the ability to use in situ chemical oxidation using persulfate for the remediation of MGP residuals in the subsurface is evaluated using field measurements and bench-scale experimentation. The reductions observed in aqueous phase compounds in MGP groundwater as observed in the laboratory indicate the potential for reductions in groundwater concentrations at this and other contaminated former MGP sites. However, column experiments, indicating the inability for activated persulfate to reduce all identified compounds in the MGP NAPL suggest source treatment with activated persulfate would not reduce concentrations to below Florida Department of Environmental Protection natural attenuation concentrations.
|
3 |
In situ chemical oxidation of TCE-contaminated groundwater using slow permanganate-releasing materialWang, Sze-Kai 03 August 2011 (has links)
The purpose of this study was to use controlled release technology combining with in situ chemical oxidation (ISCO) and permeable reactive barrier (PRB) to remediate TCE-contaminated groundwater. In this study, potassium permanganate (KMnO4) releasing material was designed for potassium permanganate release in groundwater. The components of potassium permanganate releasing material included poly (£`-caprolactone) (PCL), potassium permanganate, and starch with a weight ratio of 2:1:0.5. Approximately 63.8% (w/w) of potassium permanganate was released from the material after 76 days of operation. The released was able to oxidize contaminant in groundwater. Results from the solid oxidation demand (SOD) experiment show that the consumption rate increased with increased contaminant concentration. TCE removal efficiency increased with the increased TCE concentration. The second-order rate law can be used to simulate the TCE degradation trend. In the column experiment, results show that the released MnO4- could oxidize TCE and TCE degradation byproducts when 95.6 pore volume (PV) of contaminated groundwater was treated. More than 95% of TCE removal can be observed in the column study. Although the concentration of manganese dioxide (MnO2) began to rise after 8.8 PV of operation, TCE removal was not affected. Results also show that low level of hexavalent chromium was detected (< 0.05 mg/L). Results from the scanning electron microscope (SEM) and energy-dispersive spectroscope (EDX) analyses show that the amounts of manganese and potassium in the materials decreased after the releasing experiment. Results indicate that the concentration of TCE and SOD need to be analyzed before the releasing materials are applied in situ. In the practical application, the releasing materials will not become solid wastes because they are decomposed after use. If this slow-releasing technology can be combined with a permeable reactive barrier system, this technology will become a more economic and environmentally-friendly green remedial system.
|
4 |
Development of in situ oxidative-barrier and biobarrier to remediate organic solvents-contaminated groundwaterLiang, Shu-hao 06 September 2011 (has links)
Soil and groundwater at many existing and former industrial areas and disposal sites is contaminated by organic solvent compounds that were released into the environment. Organic solvent compounds are heavier than water. When they are released into the subsurface, they tend to adsorb onto the soils and cause the appearance of LNAPL (light nonaqueous phase liquid) and DNAPL (dense nonaqueous phase liquid) pool. The industrial petroleum hydrocarbons (e.g., methyl tertiary-butyl ether, MTBE and benzene) and chlorinated solvent (e.g., trichloroethylene, TCE) are among the most ubiquitous organic compounds found in subsurface contaminated environment. One cost-effective approach for the remediation of the chlorinated solvent and petroleum products contaminated aquifers is the installation of permeable reactive zones or barriers within aquifers. As contaminated groundwater moves through the emplaced reactive zones, the contaminants are removed, and uncontaminated groundwater emerges from the downgradient side of the reactive zones.
The objectives of this study were developed to evaluate the feasibility of applying in-situ chemical oxidation (ISCO) barrier and in-situ slow polycolloid-releasing substrate (SPRS) biobarrier system on the control of petroleum hydrocarbons and chlorinated solvent plume in aquifer. In the ISCO barrier system, it contained oxidant-releasing materials, to release oxidants (e.g., persulfate) contacting with water for oxidating contaminants existed in groundwater. In this study, laboratory-scale fill-and-draw experiments were conducted to determine the compositions ratios of the oxidant-releasing materials and evaluate the persulfate release rates. Results indicate that the average persulfate-releasing rate of 7.26 mg S2O82-/d/g was obtained when the mass ratio of sodium persulfate/cement/sand/water was 1/1.4/0.24/0.7. The column study was conducted to evaluate the efficiency of in situ application of the developed ISCO barrier system on MTBE and benzene oxidation. Results from the column study indicate that approximately 86-92% of MTBE and 95-99% of benzene could be removed during the early persulfate-releasing stage (before 48 pore volumes of groundwater pumping). The removal efficiencies for MTBE and benzene dropped to approximately 40-56% and 85-93%, respectively, during the latter part of the releasing period due to the decreased persulfate-releasing rate. Results reveal that acetone, byproduct of MTBE, was observed and then further oxidized completely. Results suggest that the addition of ferrous ion would activate the persulfate oxidation. However, excess ferrous ion would compete with organic contaminants for persulfate, causing the decrease in contaminant oxidation rates. In the SPRS biobarrier system, the food preparation industry has tremendous experiences in producing stable oil-in-water (W/O, 50/50) emulsions with a uniformly small droplet size. Surfactant mixture (71 mg/L of SL and 72 /L of SG) blending with water could yield a stable and the optimal emulsion was considered the best. The small absolute value of the emulsion zeta potential reduces inter-particle repulsion, causing the emulsion droplets to stick to each other when they collided. Overtime, large masses of flocculated droplets can form which then clog the sediment pores. The results can be used to predict abiotic interactions and distribution of contaminant mass expected after SPRS injection, and thus provides a more accurate estimate of the mass of TCE removed due to enhanced biodegradation. The effect of TCE partitioning to the vegetable oil on contaminant migration rates can be approximated using a retardation factor approach, where 0.28 years through a 3 m barrier. In anaerobic microcosm experiments, result show that SPRS can be fermented to hydrogen and acetate could be used as a substrate to simulate reductive dehalorination. The apparent complete removal of nitrate and sulfate by SPRS addition was likely a major factor that promoted the complete reduction of TCE at later stages of this study. Results from the column experiment indicate that occurrence of anaerobic reductive dechlorination in the biobarrier system can be verified by: (1) the oil: water partition coefficients of dissolved TCE into vegetable oil were be used to predict abiotic interactions and distribution of contaminant mass expected after SPRS injection. (2) The SPRS can ferment to hydrogen and acetate could be used as a substrate to simulate reductive dechlorination. The proposed treatment scheme would be expected to provide a more cost-effective alternative to remediate other petroleum hydrocarbons and chlorinated solvents-contaminated aquifers. Experiments and operational parameters obtained from this study provide an example to design a passive barriers system for in-site remediation.
|
5 |
Evaluation of persulfate for the treatment of manufactured gas plant residualsMcIsaac, Angela January 2013 (has links)
The presence of coal tars in the subsurface associated with former manufactured gas plants (MGPs) offers a remediation challenge due to their complex chemical composition, dissolution behaviour and recalcitrant characteristics. A former MGP site in Clearwater Beach, Florida was characterized and bench-scale analyses were conducted to assess the potential for in situ chemical oxidation (ISCO) using persulfate to treat MGP residuals.
Completion of a conceptual site model identified a homogeneous, silty sand aquifer, with an average hydraulic conductivity of approximately 2.3x10-3 cm/s and a groundwater flow rate of 2 cm/day in the direction of S20°E. Six source zones, three near the water table and three in the deep aquifer were estimated to have a total volume of 108 m3. A multi-level well transect was installed to monitor concentrations of dissolved compounds and to estimate mass discharge downgradient of the source zones over time. On average, the morphology of the aqueous concentrations remained consistent with time. A total mass discharge across the transect of 94 mg/day was estimated for site-specific compounds.
Bench-scale tests were conducted on aquifer sediments and groundwater samples. The aquifer was determined to have a low buffering capacity, low chemical oxygen demand, and low natural oxidant interaction (NOI) with persulfate. Aqueous batch experiments identified the potential for iron (II) activated persulfate to reduce concentrations of BTEX and PAHs below method detection limits (MDLs). Unactivated persulfate was able to reduce BTEX concentrations to below MDLs after 14 days; however, the concentration of PAH compounds remained above MDLs after 14 days. Higher iron doses within the system were shown to be more effective in reducing BTEX and PAH compounds.
Column experiments designed to mimic site conditions were used to evaluate the feasibility of persulfate treatment on impacted sediments from the Clearwater site. Two sets of column experiments were conducted: one using unactivated persulfate followed by alkaline activated persulfate; and one using iron (II) activated persulfate. On average, unactivated persulfate was able to reduce BTEX and PAH aqueous effluent concentrations by > 75% and 40%, respectively, after a total dose of 60 g/g soil. Two additional doses of alkaline activated persulfate (total persulfate dose of ~80g/g soil) in these columns were able to further reduce effluent BTEX and PAH concentrations by > 90% and > 75%, respectively. Iron (II) activated persulfate reduced effluent BTEX concentrations by > 70% and PAHs by > 65% after a total dose of 35 g/g soil. Average reductions in mass for BTEX and PAH compounds were approximately of 48% and 26% respectively in the iron (II) activated persulfate columns, and 24% and 10%, respectively in the alkaline activated persulfate columns.
The potential for the ability to use in situ chemical oxidation using persulfate for the remediation of MGP residuals in the subsurface is evaluated using field measurements and bench-scale experimentation. The reductions observed in aqueous phase compounds in MGP groundwater as observed in the laboratory indicate the potential for reductions in groundwater concentrations at this and other contaminated former MGP sites. However, column experiments, indicating the inability for activated persulfate to reduce all identified compounds in the MGP NAPL suggest source treatment with activated persulfate would not reduce concentrations to below Florida Department of Environmental Protection natural attenuation concentrations.
|
6 |
Avaliação da interação entre o persulfato de potássio com solos brasileiros para a utilização da tecnologia de remediação por oxidação química in situ. / Evaluation of interaction between potassium persulfate and Brazilian soils for use in remediation technology by in situ chemical oxidation.Oliveira, Fernanda Campos de 19 May 2015 (has links)
Recentemente, o uso de persulfato em processo de oxidação química in situ em áreas contaminadas por compostos orgânicos ganhou notoriedade. Contudo, a matriz sólida do solo pode interagir com o persulfato, favorecendo a formação de radicais livres, evitando o acesso do oxidante até o contaminante devido a oxidação de compostos reduzidos presentes no solo ou ainda pela alteração das propriedades hidráulicas do solo. Essa pesquisa teve como objetivos avaliar se as interações entre a solução de persulfato com três solos brasileiros poderiam eventualmente interferir sua capacidade de oxidação bem como se a interação entre eles poderia alterar as propriedades hidráulicas do solo. Para isso, foram realizados ensaios de oxidação do Latossolo Vermelho (LV), Latossolo Vermelho Amarelo (LVA) e Neossolo Quartzarênico (NQ) com solução de persulfato (1g/L e 14g/L) por meio de ensaios de batelada, bem como a oxidação do LV por solução de persulfato (9g/L e 14g/L) em colunas indeformadas. Os resultados mostraram que o decaimento do persulfato seguiu modelo de primeira ordem e o consumo do oxidante não foi finito. A maior constante da taxa de reação (kobs) foi observada para o reator com LV. Essa maior interação foi decorrente da diferença na composição mineralógica e área específica. A caulinita, a gibbsita e os óxidos de ferro apresentaram maior interação com o persulfato. A redução do pH da solução dos reatores causou a lixiviação do alumínio e do ferro devido a dissolução dos minerais. O ferro mobilizado pode ter participado como catalisador da reação, favorecendo a formação de radicais livres, mas foi o principal responsável pelo consumo do oxidante. Parte do ferro oxidado pode ter sido precipitado como óxido cristalino favorecendo a obstrução dos poros. Devido à maior relação entre massa de persulfato e massa de solo, a constante kobs obtida no ensaio com coluna foi 23 vezes maior do que a obtida no ensaio de batelada, mesmo utilizando concentração 1,5 vezes menor no ensaio com coluna. Houve redução na condutividade hidráulica do solo e o fluxo da água mostrou-se heterogêneo após a oxidação devido a mudanças na estrutura dos minerais. Para a remediação de áreas com predomínio de solos tropicais, especialmente do LV, pode ocorrer a formação de radicais livres, mas pode haver um consumo acentuado e não finito do oxidante. Verifica-se que o pH da solução não deve ser inferior a 5 afim de evitar a mobilização de metais para a água subterrânea e eventual obstrução dos poros por meio da desagregação dos grãos de argila. / Recently the persulfate application for in situ chemical oxidation at areas contaminated by organic compounds gained notoriety. However, the persulfate can interact with the solid matrix of the soil favoring the formation of free radicals, avoiding the oxidant access to the contaminant due to the oxidation of reduced compounds present in the soil or by changing the hydraulic properties of the soil. This research aimed to evaluate if the interactions between the persulfate solutions and three Brazilian tropical soils could eventually interfere on the persulfate oxidation capacity and if the interaction between them could modify the hydraulic properties of the soil. For such, oxidation tests were performed with soils: Latossolo Vermelho (LV), Latossolo Vermelho Amarelo (LVA) and Neossolo Quartzarênico (NQ) with persulfate solution (1 and 14 g/L) through batch tests and LV oxidation by persulfate solution (9 and 14 g/L) on undisturbed columns. The results showed that persulfate decay followed a first order model and oxidant consumption was not finite. The higher reaction rate coefficient (kobs) was observed in the reactor with LV. This higher interaction was due to the difference in the mineralogical composition and surface area. Kaolinite, gibbisita and iron oxides showed greater interaction with persulfate. The pH reduction on the reactor solution caused the aluminum and iron leaching due to dissolution of minerals. The mobilized iron may have participated as a reaction catalyst favoring the formation of free radicals although it was the major responsible for the oxidant consumption. Part of oxidized iron may have been precipitated as crystalline oxide favoring the clogged pores. As a consequence of the higher mass proportion between persulfate and soil, the kobs constant obtained in the column test was 23 times higher than the one observed on the batch test, even utilizing a concentration 1.5 times lower than bath test. There was a reduction in the soil hydraulic conductivity and the water flow proved to be heterogeneous after oxidation due to changes in minerals structure. For remediation purposes in areas with predominance of tropical soils, especially LV, the formation of free radicals may occur but an accented and not finite oxidant consumption may happen. It is verified that the pH solution should not be inferior than 5 to prevent the mobilization of metals to the groundwater and a possible pores clogging by the breakdown of the clay grains.
|
7 |
Interaction of Chemical Oxidants with Aquifer MaterialsXu, Xiuyuan January 2006 (has links)
In situ chemical oxidation (ISCO) is a leading-edge technology for soil and groundwater remediation, and involves injecting a chemical oxidant (e. g. , permanganate, hydrogen peroxide, or persulfate) into the subsurface to deplete contaminant mass through oxidation. Since the delivery of the chosen oxidant to the target treatment zone must occur in situ, the interaction between the injected oxidant and the aquifer material is a key controlling factor for a successful ISCO application. While many published ISCO studies have focused on the interaction between an oxidant and target contaminants, many questions still remain on the interaction between a potential oxidant and the aquifer material. Through a series of bench-scale experiments with aquifer materials collected from 10 sites throughout North America, the research presented in this thesis provides insight into the interaction between these aquifer materials and two widely used ISCO oxidants; permanganate and hydrogen peroxide. <br /><br /> The investigation into the interaction between aquifer materials and permanganate consisted of three series of bench-scale experiments: (1) long-term batch experiments which were used to investigate permanganate consumption in response to fundamental geochemical properties of the aquifer materials, (2) short-term batch experiments which were designed to yield kinetic data that describe the behavior of permanganate in the presence of various aquifer materials, and (3) column experiments which were used to investigate permanganate transport in a system that mimics the subsurface environment. The long-term experiments which involved more than 180 batch reactors monitored for ~300 days showed that the unproductive permanganate consumption by aquifer materials or natural oxidant demand (NOD) is strongly affected by the initial permanganate concentration, permanganate to solid mass ratio, and the reductive components associated with each aquifer material. This consumption cannot be represented by an instantaneous reaction process but is kinetically controlled by at least a fast and slow reactive component. Accordingly, an empirical expression for permanganate NOD in terms of aquifer material properties, and a hypothetical kinetic model consisting of two reaction components were developed. In addition, a fast and economical permanganate NOD estimation procedure based on a permanganate COD test was developed and tested. The investigation into short-term permanganate consumption (time scale of hours) was based on the theoretical derivation of the stoichiometric reaction of permanganate with bulk aquifer material reductive components, and consisted of excess permanganate mass experiments and excess aquifer material mass experiments. The results demonstrated that permanganate consumption by aquifer materials can be characterized by a very fast reaction on the order of minutes to hours, confirming the existence of the fast reaction component of the hypothetical kinetic model used to describe the long-term permanganate NOD observations. A typical experimental column trial consisted of flushing an aquifer-material packed column with the permanganate source solution until sufficient permanganate breakthrough was observed. The permanganate column results indicated the presence of a fast and slow consumption rate consistent with the long-term batch test data, and an intermediate consumption rate affecting the shape of the rising limb of the breakthrough curve. Finally, a comparison of the experimental results between batch and column systems indicated that permanganate NOD was significantly overestimated by the batch experiments; however, permanganate consumption displayed some similarity between the batch and column systems and hence an empirical expression was developed to predict permanganate consumption in physically representative column systems from batch reactor data. <br /><br /> The interaction between hydrogen peroxide and aquifer materials was also investigated with both batch and column experiments. A series of batch experiments consisting of a mixture of 2% hydrogen peroxide and 15 g of aquifer materials was used to capture the overall hydrogen peroxide behavior in the presence of various aquifer materials. The results indicated that the decomposition of hydrogen peroxide in the presence of various aquifer materials followed a first-order rate law, and was strongly affected by the content of amorphous transition metals (i. e. , Fe and Mn). Although hydrogen peroxide decomposition is related to the total organic carbon (TOC) content of natural aquifer materials, the results from a two-week long exposure to hydrogen peroxide suggests that not all forms of natural organic matter contributed to this decomposition. A multiple linear regression analysis was used to generate predictive relationships to estimate hydrogen peroxide decomposition rate coefficients based on various aquifer material properties. The enhanced stability of hydrogen peroxide was investigated under six scenarios with the addition of chelating reagents. The impact of a new green chelating reagent, S,S'-ethylenediaminedisuccinate (EDDS), on the stability of hydrogen peroxide in the presence of aquifer materials was experimentally examined and compared to that of the traditional and widely used chelating reagent, Ethylenediaminetetraacetic (EDTA). The results demonstrated that EDDS was able to significantly increase the stability of hydrogen peroxide, especially for aquifer materials with low TOC contents and/or high dissolvable Fe and Mn contents. Finally, to complement and expand the findings from the batch experiments, column experiments were conducted with aquifer materials from five representative sites. Each column was flushed with two types of source solutions (with or without EDDS addition) at two flow rates. The column experiments showed that the use of EDDS resulted in an earlier breakthrough and a higher stable concentration of hydrogen peroxide relative to the case without the addition of EDDS. The hydrogen peroxide decomposition rate coefficients generated from the column data were significantly higher than those generated from the batch test data and no correlation between hydrogen peroxide decomposition coefficients obtained from column and batch experiments was observed. Based on the column experimental results, a one-dimensional transport model was also calibrated to capture the hydrogen peroxide breakthrough process. <br /><br /> Data from bench-scale tests are routinely used to support both ISCO design and site screening, and therefore the findings from this study can be used as guidance on the utility of these tests to generate reliable and useful information. In general, the behavior of both permanganate and hydrogen peroxide in the presence of aquifer materials in batch and the column systems clearly indicates that the use of batch test data for ISCO system design is questionable since column experiments are believed to mimic in situ conditions better since column systems provide more realistic aquifer material contact. Thus the scaling relationships developed in this study provide meaningful tools to transfer information obtained from batch systems, which are widely employed in most bench-scale studies, to column systems.
|
8 |
Interaction of Chemical Oxidants with Aquifer MaterialsXu, Xiuyuan January 2006 (has links)
In situ chemical oxidation (ISCO) is a leading-edge technology for soil and groundwater remediation, and involves injecting a chemical oxidant (e. g. , permanganate, hydrogen peroxide, or persulfate) into the subsurface to deplete contaminant mass through oxidation. Since the delivery of the chosen oxidant to the target treatment zone must occur in situ, the interaction between the injected oxidant and the aquifer material is a key controlling factor for a successful ISCO application. While many published ISCO studies have focused on the interaction between an oxidant and target contaminants, many questions still remain on the interaction between a potential oxidant and the aquifer material. Through a series of bench-scale experiments with aquifer materials collected from 10 sites throughout North America, the research presented in this thesis provides insight into the interaction between these aquifer materials and two widely used ISCO oxidants; permanganate and hydrogen peroxide. <br /><br /> The investigation into the interaction between aquifer materials and permanganate consisted of three series of bench-scale experiments: (1) long-term batch experiments which were used to investigate permanganate consumption in response to fundamental geochemical properties of the aquifer materials, (2) short-term batch experiments which were designed to yield kinetic data that describe the behavior of permanganate in the presence of various aquifer materials, and (3) column experiments which were used to investigate permanganate transport in a system that mimics the subsurface environment. The long-term experiments which involved more than 180 batch reactors monitored for ~300 days showed that the unproductive permanganate consumption by aquifer materials or natural oxidant demand (NOD) is strongly affected by the initial permanganate concentration, permanganate to solid mass ratio, and the reductive components associated with each aquifer material. This consumption cannot be represented by an instantaneous reaction process but is kinetically controlled by at least a fast and slow reactive component. Accordingly, an empirical expression for permanganate NOD in terms of aquifer material properties, and a hypothetical kinetic model consisting of two reaction components were developed. In addition, a fast and economical permanganate NOD estimation procedure based on a permanganate COD test was developed and tested. The investigation into short-term permanganate consumption (time scale of hours) was based on the theoretical derivation of the stoichiometric reaction of permanganate with bulk aquifer material reductive components, and consisted of excess permanganate mass experiments and excess aquifer material mass experiments. The results demonstrated that permanganate consumption by aquifer materials can be characterized by a very fast reaction on the order of minutes to hours, confirming the existence of the fast reaction component of the hypothetical kinetic model used to describe the long-term permanganate NOD observations. A typical experimental column trial consisted of flushing an aquifer-material packed column with the permanganate source solution until sufficient permanganate breakthrough was observed. The permanganate column results indicated the presence of a fast and slow consumption rate consistent with the long-term batch test data, and an intermediate consumption rate affecting the shape of the rising limb of the breakthrough curve. Finally, a comparison of the experimental results between batch and column systems indicated that permanganate NOD was significantly overestimated by the batch experiments; however, permanganate consumption displayed some similarity between the batch and column systems and hence an empirical expression was developed to predict permanganate consumption in physically representative column systems from batch reactor data. <br /><br /> The interaction between hydrogen peroxide and aquifer materials was also investigated with both batch and column experiments. A series of batch experiments consisting of a mixture of 2% hydrogen peroxide and 15 g of aquifer materials was used to capture the overall hydrogen peroxide behavior in the presence of various aquifer materials. The results indicated that the decomposition of hydrogen peroxide in the presence of various aquifer materials followed a first-order rate law, and was strongly affected by the content of amorphous transition metals (i. e. , Fe and Mn). Although hydrogen peroxide decomposition is related to the total organic carbon (TOC) content of natural aquifer materials, the results from a two-week long exposure to hydrogen peroxide suggests that not all forms of natural organic matter contributed to this decomposition. A multiple linear regression analysis was used to generate predictive relationships to estimate hydrogen peroxide decomposition rate coefficients based on various aquifer material properties. The enhanced stability of hydrogen peroxide was investigated under six scenarios with the addition of chelating reagents. The impact of a new green chelating reagent, S,S'-ethylenediaminedisuccinate (EDDS), on the stability of hydrogen peroxide in the presence of aquifer materials was experimentally examined and compared to that of the traditional and widely used chelating reagent, Ethylenediaminetetraacetic (EDTA). The results demonstrated that EDDS was able to significantly increase the stability of hydrogen peroxide, especially for aquifer materials with low TOC contents and/or high dissolvable Fe and Mn contents. Finally, to complement and expand the findings from the batch experiments, column experiments were conducted with aquifer materials from five representative sites. Each column was flushed with two types of source solutions (with or without EDDS addition) at two flow rates. The column experiments showed that the use of EDDS resulted in an earlier breakthrough and a higher stable concentration of hydrogen peroxide relative to the case without the addition of EDDS. The hydrogen peroxide decomposition rate coefficients generated from the column data were significantly higher than those generated from the batch test data and no correlation between hydrogen peroxide decomposition coefficients obtained from column and batch experiments was observed. Based on the column experimental results, a one-dimensional transport model was also calibrated to capture the hydrogen peroxide breakthrough process. <br /><br /> Data from bench-scale tests are routinely used to support both ISCO design and site screening, and therefore the findings from this study can be used as guidance on the utility of these tests to generate reliable and useful information. In general, the behavior of both permanganate and hydrogen peroxide in the presence of aquifer materials in batch and the column systems clearly indicates that the use of batch test data for ISCO system design is questionable since column experiments are believed to mimic in situ conditions better since column systems provide more realistic aquifer material contact. Thus the scaling relationships developed in this study provide meaningful tools to transfer information obtained from batch systems, which are widely employed in most bench-scale studies, to column systems.
|
9 |
Persulfate Persistence and Treatability of Gasoline CompoundsSra, Kanwartej Singh January 2010 (has links)
Petroleum hydrocarbons (PHCs) such as gasoline are ubiquitous organic compounds present at contaminated sites throughout the world. Accidental spills and leakage from underground storage tanks results in the formation of PHC source zones that release hundreds of organic compounds, including the high impact, acutely toxic and highly persistent aromatics (e.g., benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) into groundwater. Contamination by these compounds continues to persist until the PHC source zone is treated in place or removed. In situ chemical oxidation (ISCO) employing persulfate was identified as a potentially viable technology for the treatment of PHC source zones. The effectiveness and efficiency and, therefore, the overall economic feasibility of a persulfate-based ISCO treatment system depend upon the reactivity of the target organic compounds and the interaction of persulfate with aquifer media. The objective of this research was to investigate the persistence of unactivated and activated persulfate in the presence of aquifer materials, and to examine persulfate oxidation of PHC compounds at both the bench- and pilot-scales.
A series of bench-scale studies were performed to estimate persulfate degradation kinetic parameters in the presence of seven well-characterized, uncontaminated aquifer materials and to quantify the changes in specific properties of these materials. Batch experiments were conducted in an experimental system containing 100 g of solids and 100 mL of persulfate solution at 1 or 20 g/L. Column experiments were designed to mimic in situ conditions with respect to oxidant to solids mass ratio and were performed in a stop-flow mode using a 1 g/L persulfate solution. The degradation of persulfate followed a first-order rate law for all aquifer materials investigated. An order of magnitude decrease in reaction rate coefficients was observed for systems that used a persulfate concentration of 20 g/L as compared to those that used 1 g/L due to ionic strength effects. As expected, the column experiments yielded higher reaction rate coefficients than batch experiments for the same persulfate concentration due to the lower oxidant to solids mass ratio. Bench-scale data was used to develop a kinetic model to estimate the kinetic response of persulfate degradation during these tests. The push-pull tests involved the injection of persulfate (1 or 20 g/L) and a conservative tracer into a hydraulically isolated portion of the sandy aquifer at CFB Borden, Canada. The kinetic model developed from the bench-scale data was able to reproduce the observed persulfate temporal profiles from these push-pull tests. This implies that persulfate degradation kinetics is scalable from bench-scale to in situ scale, and bench tests can be employed to anticipate in situ degradation. The estimated reaction rate coefficients indicate that persulfate is a persistent oxidant for the range of aquifer materials explored with half lives ranging from 2 to 600 days, and therefore in situ longevity of persulfate will permit advective and diffusive transport in the subsurface. This is critical for successful delivery of oxidant to dispersed residuals in the subsurface.
Activation of persulfate is generally recommended to enhance its oxidation potential and reactivity towards organic compounds. This approach may influence the stability of persulfate-activator system in the presence of aquifer materials. A series of batch tests were performed to investigate persistence of persulfate at two concentrations (1 or 20 g/L) using three contemporary activation strategies (citric acid chelated-ferrous, peroxide and high pH ) in the presence of 4 well-characterized, uncontaminated aquifer materials. Chelation by citric acid was ineffective in controlling the interaction between persulfate and Fe(II) and a rapid loss in persulfate concentration was observed. Higher Fe(II) concentration (600 mg/L) led to greater destabilization of persulfate than lower Fe(II) concentration (150 mg/L) and the persulfate loss was stoichiometrically equivalent to the Fe(II) concentration employed. Subsequent to this rapid loss of persulfate, first-order degradation rate coefficients (kobs) were estimated which were up to 4 times higher than the unactivated case due to the interaction with Fe(III) and CA. Total oxidation strength (TOS) was measured for peroxide activation experiments and was observed to decrease rapidly at early time due peroxide degradation. This was followed by slow degradation kinetics similar to that of unactivated persulfate implying that the initial TOS degradation was peroxide dominated and the long-term kinetics were dominated by persulfate degradation. The kobs used to capture TOS degradation for later time were shown to depend upon unactivated persulfate and peroxide degradation rate coefficients, and peroxide concentration. Either a slow peroxide degradation rate and/or higher peroxide concentration allow a longer time for peroxide and persulfate to interact which led to kobs ~1 to 100 times higher than kobs for unactivated persulfate. For alkaline activation, kobs were only 1 to 4 times higher than unactivated persulfate and therefore alkaline conditions demonstrated the least impact on persulfate degradation among the various activation strategies used. For all activation trials, lower stability of persulfate was observed at 1 g/L as compared to 20 g/L due to insufficient persulfate and/or ionic strength effects.
A series of batch reactor trials were designed to observe the behavior of the nine high impact gasoline compounds and the bulk PHC fraction measures subjected to various persulfate activation strategies over a 28-day period. This bench-scale treatability used unactivated persulfate (1 or 20 g/L) and activated persulfate (20 g/L). Activation employed chelated-Fe(II), peroxide, high pH or two aquifer materials as activators. No significant oxidation of the monitored compounds was observed for unactivated persulfate at 1 g/L, but 20 g/L persulfate concentration resulted in their near-complete oxidation. Oxidation rates were enhanced by 2 to 18 times by activation with peroxide or chelated-Fe(II). For alkaline activation, pH 11 trials demonstrated ~2 times higher oxidation rates than the unactivated results. For pH 13 activation the oxidation rates of benzene, toluene and ethylbenzene were reduced by 50% while for the remaining monitored compounds they were enhanced by 5 to 100%. Natural activation by both aquifer materials produced oxidation rates similar to the unactivated results, implying that either activation by minerals associated with aquifer material was not significant or that any potential activation was offset by radical scavenging from aquifer material constituents. Acid-catalyzation at pH <3 may enhance oxidation rates in weakly buffered systems. Oxidation of the monitored compounds followed first-order reaction kinetics and rate coefficients were estimated for all the trials. Overall, activated and unactivated persulfate appear to be suitable for in situ treatment of gasoline.
Persulfate under unactivated or naturally activated conditions demonstrated significant destruction of gasoline compounds and showed higher persulfate persistence when in contact with aquifer solids as compared to chelated-Fe(II) or peroxide-activated persulfate systems. This observation was used as the basis for selecting unactivated sodium persulfate for a pilot-scale treatment of gasoline-contaminated source zone at CFB Borden, Canada where a ~2000 L solution of persulfate (20 g/L) was injected into a PHC source zone. Concentration of organics and inorganics were frequently monitored over a 4 month period across a 90 point monitoring fence line installed down-gradient. Treatment performance was measured by estimating organic and inorganic mass loading across the monitoring fence. Increased mass loading for sodium was observed over time as the treatment volume moved across the fence-line indicating transport of the inorganic slug created upon oxidant injection. The mass loading also increased for sulfate which is a by-product generated either due to persulfate degradation during oxidation of organic compounds or during its interaction with aquifer materials. Oxidation of organic compounds was evident from the enhanced mass loading of dissolved carbon dioxide. More importantly, a significant (45 to 86%) decrease in mass loading of monitored compounds was observed due to oxidation by injected persulfate. The cumulative mass crossing the monitoring fence-line was 20 to 50% lower than that expected without persulfate treatment. As the inorganic slug was flushed through the source zone and beyond the monitoring fence, the mass loading rate of sodium, sulfate and carbon dioxide decreased and approached background condition. Mass loading of the monitored compounds increased to within 40 to 80% of the pre-treatment conditions, suggesting partial rebound.
These investigations assessed the impact of activation on persulfate persistence and treatability of gasoline and served to establish guidelines for anticipating field-scale persulfate behavior under similar conditions. In summary, unactivated persulfate is a stable oxidant in the presence of aquifer materials and its persistence depends upon TOC and Fe(Am) content of the materials, ionic strength, and aquifer to solids mass ratio. Persulfate exhibits significant destruction of gasoline compounds and can be employed for the remediation of gasoline-contaminated sites. Peroxide and chelated-Fe(II) enhance oxidation rates of these compounds, but reduce stability of the persulfate-activator system. Persulfate activation using high pH conditions does not significantly impact persulfate persistence but reduces the overall destruction of gasoline compounds. Therefore, activation imposes a trade-off between enhanced oxidation rates and reduced persulfate persistence. Kinetic model is representative of persulfate degradation at bench- and pilot-scales and can be used for estimation of in situ degradation. The quantification of oxidation rates for gasoline compounds under activated and unactivated persulfate conditions will assist decision-making for identification of appropriate remediation options when targeting contamination by gasoline or by specific high impact gasoline compounds. While persulfate oxidation resulted in partial treatment of a small gasoline source zone, aggressive persulfate load will be required during injection for a complete clean-up. Overall, persulfate-based in situ chemical oxidation was demonstrated to be an effective and a viable technology for the remediation of contaminated soil and groundwater.
|
10 |
In situ Chemical Oxidation using Unactivated Sodium Persulphate at a Former Gasoline StationBiswas, Neelmoy Chaitanya 29 June 2011 (has links)
The contamination of aquifer systems by petroleum hydrocarbons is a global problem. Underground storage tanks used for storing these hydrocarbons often leak, resulting in subsurface contamination. The hazards associated with petroleum hydrocarbon contamination are mainly attributable to the BTEX compounds, namely benzene, toluene, ethylbenzene and xylenes together with trimethylbenzenes (TMBs) and naphthalene due to their potential to impact human health and the ease with which they can enter the groundwater system.
In situ chemical oxidation (ISCO) is the delivery of strong chemical oxidants to the subsurface for the purpose of treating organic contaminants. ISCO can be an effective way to remediate organic contaminants from the soil and groundwater. Sodium persulphate is one of the newer oxidants to gain widespread use in treating petroleum hydrocarbon contamination, though without being fully understood. This investigation tested the ability of unactivated sodium persulphate in treating dissolved phase and residual BTEX contamination through bench-scale laboratory tests and a pilot-scale field study.
A degradation potential batch reactor test was carried out to assess the efficacy of unactivated sodium persulphate in oxidizing petroleum hydrocarbons present in contaminated groundwater as well as its effect on aquifer material from a field site. This test was carried out at a sodium persulphate concentration of 20 g/L. Results from this test did not follow the expected first-order degradation, and so subsequent experiments were carried out using a sodium persulphate concentration of 100 g/L. A test to determine the degree of interaction between the oxidant and aquifer material was also conducted. It was found that the degree of natural oxidant interaction for the field site in question was very low.
1000 kg of sodium persulphate was dissolved in nearly 10,000 L of water and injected into the subsurface. Electrical conductivity (EC), pH, sodium, persulphate, sulphate and BTEX were all monitored during the subsequent 152-day post-injection monitoring period.
An empirical relationship was determined between EC and the concentration of sodium in groundwater. This enabled the use of EC as a real-time tracer to track the progress of the injectate.
Field results supported predictions based on a simulation model that density-driven flow would play an important role in the delivery of the injectate. A portion of the injectate was believed to have been missed by the monitoring network. Areas that did show elevated tracer results in some cases showed a decrease in BTEX concentrations. Results were categorized in four ways. The first category had wells that showed strong evidence of injectate presence but little to no change in BTEX levels. The second category was comprised of wells that showed a reduction in BTEX levels along with the presence of injectate. BTEX levels in some wells rebounded towards the end of the study period. The third category consisted of wells that showed the presence of dilute injectate but did not show any reduction in BTEX concentrations. The fourth and final category was of wells that showed no evidence of having been affected by the injectate in any way. BTEX levels were the same as background.
The oxidation of BTEX by unactivated sodium persulphate was found to be successful, though the vagaries of oxidant delivery and field sampling made difficult the accurate determination of the degree of success.
|
Page generated in 0.1318 seconds