Spelling suggestions: "subject:"approximability"" "subject:"inapplicability""
11 |
Graph colorings and digraph subdivisions / Colorações de grafos e subdivisões de digrafosPhablo Fernando Soares Moura 30 March 2017 (has links)
The vertex coloring problem is a classic problem in graph theory that asks for a partition of the vertex set into a minimum number of stable sets. This thesis presents our studies on three vertex (re)coloring problems on graphs and on a problem related to a long-standing conjecture on subdivision of digraphs. Firstly, we address the convex recoloring problem in which an arbitrarily colored graph G is given and one wishes to find a minimum weight recoloring such that each color class induces a connected subgraph of G. We show inapproximability results, introduce an integer linear programming (ILP) formulation that models the problem and present some computational experiments using a column generation approach. The k-fold coloring problem is a generalization of the classic vertex coloring problem and consists in covering the vertex set of a graph by a minimum number of stable sets in such a way that every vertex is covered by at least k (possibly identical) stable sets. We present an ILP formulation for this problem and show a detailed polyhedral study of the polytope associated with this formulation. The last coloring problem studied in this thesis is the proper orientation problem. It consists in orienting the edge set of a given graph so that adjacent vertices have different in-degrees and the maximum in-degree is minimized. Clearly, the in-degrees induce a partition of the vertex set into stable sets, that is, a coloring (in the conventional sense) of the vertices. Our contributions in this problem are on hardness and upper bounds for bipartite graphs. Finally, we study a problem related to a conjecture of Mader from the eighties on subdivision of digraphs. This conjecture states that, for every acyclic digraph H, there exists an integer f(H) such that every digraph with minimum out-degree at least f(H) contains a subdivision of H as a subdigraph. We show evidences for this conjecture by proving that it holds for some particular classes of acyclic digraphs. / O problema de coloração de grafos é um problema clássico em teoria dos grafos cujo objetivo é particionar o conjunto de vértices em um número mínimo de conjuntos estáveis. Nesta tese apresentamos nossas contribuições sobre três problemas de coloração de grafos e um problema relacionado a uma antiga conjectura sobre subdivisão de digrafos. Primeiramente, abordamos o problema de recoloração convexa no qual é dado um grafo arbitrariamente colorido G e deseja-se encontrar uma recoloração de peso mínimo tal que cada classe de cor induza um subgrafo conexo de G. Mostramos resultados sobre inaproximabilidade, introduzimos uma formulação linear inteira que modela esse problema, e apresentamos alguns resultados computacionais usando uma abordagem de geração de colunas. O problema de k-upla coloração é uma generalização do problema clássico de coloração de vértices e consiste em cobrir o conjunto de vértices de um grafo com uma quantidade mínima de conjuntos estáveis de tal forma que cada vértice seja coberto por pelo menos k conjuntos estáveis (possivelmente idênticos). Apresentamos uma formulação linear inteira para esse problema e fazemos um estudo detalhado do politopo associado a essa formulação. O último problema de coloração estudado nesta tese é o problema de orientação própria. Ele consiste em orientar o conjunto de arestas de um dado grafo de tal forma que vértices adjacentes possuam graus de entrada distintos e o maior grau de entrada seja minimizado. Claramente, os graus de entrada induzem uma partição do conjunto de vértices em conjuntos estáveis, ou seja, induzem uma coloração (no sentido convencional) dos vértices. Nossas contribuições nesse problema são em complexidade computacional e limitantes superiores para grafos bipartidos. Finalmente, estudamos um problema relacionado a uma conjectura de Mader, dos anos oitenta, sobre subdivisão de digrafos. Esta conjectura afirma que, para cada digrafo acíclico H, existe um inteiro f(H) tal que todo digrafo com grau mínimo de saída pelo menos f(H) contém uma subdivisão de H como subdigrafo. Damos evidências para essa conjectura mostrando que ela é válida para classes particulares de digrafos acíclicos.
|
12 |
The k-hop connected dominating set problem: approximation algorithms and hardness results / O problema do conjunto dominante conexo com k-saltos: aproximação e complexidadeRafael Santos Coelho 13 June 2017 (has links)
Let G be a connected graph and k be a positive integer. A vertex subset D of G is a k-hop connected dominating set if the subgraph of G induced by D is connected, and for every vertex v in G, there is a vertex u in D such that the distance between v and u in G is at most k. We study the problem of finding a minimum k-hop connected dominating set of a graph (Mink-CDS). We prove that Mink-CDS is NP-hard on planar bipartite graphs of maximum degree 4. We also prove that Mink-CDS is APX-complete on bipartite graphs of maximum degree 4. We present inapproximability thresholds for Mink-CDS on bipar- tite and on (1, 2)-split graphs. Interestingly, one of these thresholds is a parameter of the input graph which is not a function of its number of vertices. We also discuss the complex- ity of computing this graph parameter. On the positive side, we show an approximation algorithm for Mink-CDS. When k = 1, we present two new approximation algorithms for the weighted version of the problem, one of them restricted to graphs with a poly- nomially bounded number of minimal separators. Finally, also for the weighted variant of the problem where k = 1, we discuss an integer linear programming formulation and conduct a polyhedral study of its associated polytope. / Seja G um grafo conexo e k um inteiro positivo. Um subconjunto D de vértices de G é um conjunto dominante conexo de k-saltos se o subgrafo de G induzido por D é conexo e se, para todo vértice v em G, existe um vértice u em D a uma distância não maior do que k de v. Estudamos neste trabalho o problema de se encontrar um conjunto dominante conexo de k-saltos com cardinalidade mínima (Mink-CDS). Provamos que Mink-CDS é NP-difícil em grafos planares bipartidos com grau máximo 4. Mostramos que Mink-CDS é APX-completo em grafos bipartidos com grau máximo 4. Apresentamos limiares de inaproximabilidade para Mink-CDS para grafos bipartidos e (1, 2)-split, sendo que um desses é expresso em função de um parâmetro independente da ordem do grafo. Também discutimos a complexidade computacional do problema de se computar tal parâmetro. No lado positivo, propomos um algoritmo de aproximação para Mink-CDS cuja razão de aproximação é melhor do que a que se conhecia para esse problema. Finalmente, quando k = 1, apresentamos dois novos algoritmos de aproximação para a versão do problema com pesos nos vértices, sendo que um deles restrito a classes de grafos com um número polinomial de separadores minimais. Além disso, discutimos uma formulação de programação linear inteira para essa versão do problema e provamos resultados poliédricos a respeito de algumas das desigualdades que constituem o politopo associado à formulação.
|
13 |
Computational and communication complexity of geometric problemsHajiaghaei Shanjani, Sima 26 July 2021 (has links)
In this dissertation, we investigate a number of geometric problems in different settings. We present lower bounds and approximation algorithms for geometric problems in sequential and distributed settings.
For the sequential setting, we prove the first hardness of approximation results for the following problems:
\begin{itemize}
\item Red-Blue Geometric Set Cover is APX-hard when the objects are axis-aligned rectangles.
\item Red-Blue Geometric Set Cover cannot be approximated to within $2^{\log^{1-1/{(\log\log m)^c}}m}$ in polynomial time for any constant $c < 1/2$, unless $P=NP$, when the given objects are $m$ triangles or convex objects. This shows that Red-Blue Geometric Set Cover is a harder problem than Geometric Set Cover for some class of objects.
\item Boxes Class Cover is APX-hard.
\end{itemize}
We also define MaxRM-3SAT, a restricted version of Max3SAT, and we prove that this problem is APX-hard. This problem might be interesting in its own right.\\
In the distributed setting, we define a new model, the fixed-link model, where each processor has a position on the plane and processors can communicate to each other if and only if there is an edge between them. We motivate the model and study a number of geometric problems in this model. We prove lower bounds on the communication complexity of the problems in the fixed-link model and present approximation algorithms for them.
We prove lower bounds on the number of expected bits required for any randomized algorithm in the fixed-link model with $n$ nodes to solve the following problems, when the communication is in the asynchronous KT1 model:
\begin{itemize}
\item $\Omega(n^2/\log n)$ expected bits of communication are required for solving Diameter, Convex Hull, or Closest Pair, even if the graph has only a linear number of edges.
\item $\Omega( min\{n^2,1/\epsilon\})$ expected bits of communications are required for approximating Diameter within a $1-\epsilon$ factor of optimal, even if the graph is planar.
\item $\Omega(n^2)$ bits of communications is required for approximating Closest Pair in a graph on an $[n^c] \times [n^c]$ grid, for any constant $c>1+1/(2\lg n)$, within $\frac{n^{c-1/2}}{4}-\epsilon$ factor of optimal, even if the graph is planar.
\end{itemize}
We also present approximation algorithms in geometric communication networks with $n$ nodes, when the communication is in the asynchronous CONGEST KT1 model:
\begin{itemize}
\item An $\epsilon$-kernel, and consequently $(1-\epsilon)$-\diamapprox~ and \ep -Approximate Hull with $O(\frac{n}{\sqrt{\epsilon}})$ messages plus the costs of constructing a spanning tree.
\item An $\frac{n^c}{\sqrt{\frac{k}{2}}}$-Approximate Closest Pair on an $[n^c] \times [n^c]$ grid , for a constant $c>1/2$, plus the cost of computing a spanning tree, for any $k\leq {n-1}$.
\end{itemize}
We also define a new version of the two-party communication problem, Path Computation, where two parties communicate through a path. We prove a lower bound on the communication complexity of this problem. / Graduate
|
Page generated in 0.0468 seconds