• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerische Simulation nahezu inkompressibler Materialien unter Verwendung von adaptiver, gemischter FEM

Balg, Martina, Meyer, Arnd January 2010 (has links)
Ziel dieser Arbeit ist die Simulation der Deformation von Bauteilen, welche aus nahezu inkompressiblem Material bestehen. Dabei soll sich das Material sowohl linear als auch nichtlinear elastisch verhalten können. Zusätzlich soll die Belastung des Bauteils beliebig gewählt werden können, das heißt, es sollen kleine als auch große Deformationen möglich sein.:1. Einleitung 2. Grundlagen 3. Aufgabenstellung für linear elastisches Material unter kleinen Deformationen 4. Gemischte Methode der finiten Elemente 5. Herleitung der Fehlerschätzung 6. Aufgabenstellung für nichtlinear elastisches Material unter großen Deformationen 7. Lösungsstrategie A. Anhang
2

Elastic Incompressibility and Large Deformations: Numerical Simulation with adaptive mixed FEM

Weise, Martina 25 March 2014 (has links)
This thesis investigates the numerical simulation of three-dimensional, mechanical deformation problems in the context of large deformations. The main focus lies on the prediction of non-linearly elastic, incompressible material. Based on the equilibrium of forces, we present the weak formulation of the large deformation problem. The discrete version can be derived by using linearisation techniques and an adaptive mixed finite element method. This problem turns out to be a saddle point problem that can, among other methods, be solved via the Bramble-Pasciak conjugate gradient method or the minimal residual algorithm. With some modifications the resulting simulation can be improved but we also address remaining limitations. Some numerical examples show the capability of the final FEM software. In addition, we briefly discuss the special case of linear elasticity with small deformations. Here we directly derive a linear weak formulation with a saddle point structure and apply the adaptive mixed finite element method. It is shown that the presented findings can also be used to treat the nearly incompressible case.

Page generated in 0.1203 seconds