• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Frequency-scalable 14-bit ADC for Low Power Sensor Applications

Liang, Joshua 15 February 2010 (has links)
In this thesis, a 14-bit low-power Analog-to-Digital Converter (ADC) is designed for sensor applications. Following on previous work, the ADC is designed to be frequency scalable by 1000 times from 1.67S/s to 1.67kS/s. To reduce power, class AB opamps are used. The design was fabricated in 0.18um CMOS and occupies an area of 0.35mm2. Operating at full-rate as a Delta-Sigma modulator, the ADC achieves 91.8dB peak SNDR while consuming 83uW. In incremental mode, the ADC powers off periodically to achieve frequency scalability, maintaining 84.7dB to 89dB peak SNDR while operating from 1.67S/s to 1.67kS/s.
2

A Frequency-scalable 14-bit ADC for Low Power Sensor Applications

Liang, Joshua 15 February 2010 (has links)
In this thesis, a 14-bit low-power Analog-to-Digital Converter (ADC) is designed for sensor applications. Following on previous work, the ADC is designed to be frequency scalable by 1000 times from 1.67S/s to 1.67kS/s. To reduce power, class AB opamps are used. The design was fabricated in 0.18um CMOS and occupies an area of 0.35mm2. Operating at full-rate as a Delta-Sigma modulator, the ADC achieves 91.8dB peak SNDR while consuming 83uW. In incremental mode, the ADC powers off periodically to achieve frequency scalability, maintaining 84.7dB to 89dB peak SNDR while operating from 1.67S/s to 1.67kS/s.

Page generated in 0.1122 seconds