1 |
L'homogénéisation d'équations de convection-diffusion singulières et de problèmes spectraux à poids indéfiniPankratova, Iryna 17 January 2011 (has links) (PDF)
Le but de la thèse est d'étudier l'homogénéisation d'équations de convection-diffusion singulières et de problèmes spectraux à poids indéfini. La thèse se compose de deux parties. La première partie contient des résultats qualitatifs et asymptotiques pour les solutions d'équations de type convection-diffusion stationnaires et instationnaires, qui sont définies dans des domaines bornés ou nonbornés. Les problèmes examinés comprennent des études qualitatives pour une équation elliptique avec des termes du premier ordre dans un cylindre semi-infini, l'homogénéisation de modèles de convection-diffusion dans des cylindres minces et une analyse asymptotique d'équations de convection-diffusion instationnaires avec un grand terme du premier ordre, posées dans un domaine borné. La deuxième partie de la thèse porte sur l'homogénéisation de problèmes spectraux à poids indéfini, pouvant changer de signe. On montre que le comportement asymptotique dépend essentiellement de la moyenne du poids, notamment si la moyenne est nulle ou non nulle. On construit alors le développement asymptotique du spectre dans les deux cas.
|
Page generated in 0.0481 seconds