1 |
Independent component analysis for maternal-fetal electrocardiographyMarcynuk, Kathryn L. 09 January 2015 (has links)
Separating unknown signal mixtures into their constituent parts is a difficult problem in signal processing called blind source separation. One of the benchmark problems in this area is the extraction of the fetal heartbeat from an electrocardiogram in which it is overshadowed by a strong maternal heartbeat. This thesis presents a study of a signal separation technique called independent component analysis (ICA), in order to assess its suitability for the maternal-fetal ECG separation problem. This includes an analysis of ICA on deterministic, stochastic, simulated and recorded ECG signals. The experiments presented in this thesis demonstrate that ICA is effective on linear mixtures of known simulated or recorded ECGs. The performance of ICA was measured using visual comparison, heart rate extraction, and energy, information theoretic, and fractal-based measures. ICA extraction of clinically recorded maternal-fetal ECGs mixtures, in which the source signals were unknown, were successful at recovering the fetal heart rate.
|
2 |
A Machine Learning Method to Improve Non-Contact Heart Rate Monitoring Using RGB CameraGhanadian, Hamideh 12 December 2018 (has links)
Recording and monitoring vital signs is an essential aspect of home-based healthcare. Using contact sensors to record physiological signals can cause discomfort to patients, especially after prolonged use. Hence, remote physiological measurement approaches have attracted considerable attention as they do not require physical contact with the patient’s skin. Several studies proposed techniques to measure Heart Rate (HR) and Heart Rate Variability (HRV) by detecting the Blood Volume Pulse (BVP) from human facial video recordings while the subject is in a resting condition. In this thesis, we focus on the measurement of HR.
We adopt an algorithm that uses the Independent Component Analysis (ICA) to separate the source (physiological) signal from noise in the RGB channels of a facial video. We generalize existing methods to support subject movement during video recording. When a subject is moving, the face may be turned away from the camera. We utilize multiple cameras to enable the algorithm to monitor the vital sign continuously, even if the subject leaves the frame or turns away from a subset of the system’s cameras. Furthermore, we improve the accuracy of existing methods by implementing a light equalization scheme to reduce the effect of shadows and unequal facial light on the HR estimation, a machine learning method to select the most accurate channel outputted by the ICA module, and a regression technique to adjust the initial HR estimate. We systematically test our method on eleven subjects using four cameras. The proposed method decreases the RMSE by 27% compared to the state of the art in the rest condition. When the subject is in motion, the proposed method achieves a RMSE of 1.12 bpm using a single camera and RMSE of 0.96 bpm using multiple camera.
|
3 |
New energy detector extensions with application in sound based surveillance systemsMoragues Escrivá, Jorge 12 September 2011 (has links)
This thesis is dedicated to the development of new energy detectors employed
in the detection of unknown signals in the presence of non-Gaussian and
non-independent noise samples. To this end, an extensive study has been
conducted on di erent energy detection structures, and novel techniques
have been proposed which are capable of dealing with these problematic
situations.
The energy detector is proposed as an optimum solution to detect uncorrelated
Gaussian signals, or as a generalized likelihood ratio test to detect
entirely unknown signals. In both cases, the background noise must be
uncorrelated Gaussian. However, energy detectors degrade when the noise
does not ful ll these characteristics. Therefore, two extensions are proposed.
The rst is the extended energy detector, which deals with the problem
of non-Gaussian noise; and the second is the preprocessed extended energy
detector, used when the noise also possesses non-independent samples. A
generalization of the matched subspace lter is likewise proposed based on a
modi cation of the Rao test. In order to evaluate the expected improvement
of these extensions with respect to the classical energy detector, a signalto-
noise ratio enhancement factor is de ned and employed to illustrate the
improvement achieved in detection.
Furthermore, we demonstrate how the uncertainty introduced by the unknown
signal duration can decrease the performance of the energy detector.
In order to improve this behavior, a multiple energy detector, based on successive
subdivisions of the original observation interval, is presented. This
novel detection technique leads to a layered structure of energy detectors
whose observation vectors are matched to di erent intervals of signal duration.
The corresponding probabilities of false alarm and detection are derived
for a particular subdivision strategy, and the required procedures for their
general application to other possible cases are indicated. The experiments
reveal the advantages derived from utilizing this novel structure, making it
a worthwhile alternative to the single detector when a signi cant mismatch
is present between the original observation length and the actual duration
of the signal. / Moragues Escrivá, J. (2011). New energy detector extensions with application in sound based surveillance systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/11520
|
4 |
Iterative issues of ICA, quality of separation and number of sources: a study for biosignal applicationsNaik, Ganesh Ramachandra, ganesh.naik@rmit.edu.au January 2009 (has links)
This thesis has evaluated the use of Independent Component Analysis (ICA) on Surface Electromyography (sEMG), focusing on the biosignal applications. This research has identified and addressed the following four issues related to the use of ICA for biosignals: The iterative nature of ICA The order and magnitude ambiguity problems of ICA Estimation of number of sources based on dependency and independency nature of the signals Source separation for non-quadratic ICA (undercomplete and overcomplete) This research first establishes the applicability of ICA for sEMG and also identifies the shortcomings related to order and magnitude ambiguity. It has then developed, a mitigation strategy for these issues by using a single unmixing matrix and neural network weight matrix corresponding to the specific user. The research reports experimental verification of the technique and also the investigation of the impact of inter-subject and inter-experimental variations. The results demonstrate that while using sEMG without separation gives only 60% accuracy, and sEMG separated using traditional ICA gives an accuracy of 65%, this approach gives an accuracy of 99% for the same experimental data. Besides the marked improvement in accuracy, the other advantages of such a system are that it is suitable for real time operations and is easy to train by a lay user. The second part of this thesis reports research conducted to evaluate the use of ICA for the separation of bioelectric signals when the number of active sources may not be known. The work proposes the use of value of the determinant of the Global matrix generated using sparse sub band ICA for identifying the number of active sources. The results indicate that the technique is successful in identifying the number of active muscles for complex hand gestures. The results support the applications such as human computer interface. This thesis has also developed a method of determining the number of independent sources in a given mixture and has also demonstrated that using this information, it is possible to separate the signals in an undercomplete situation and reduce the redundancy in the data using standard ICA methods. The experimental verification has demonstrated that the quality of separation using this method is better than other techniques such as Principal Component Analysis (PCA) and selective PCA. This has number of applications such as audio separation and sensor networks.
|
5 |
Ανίχνευση ρυθμών εγκεφαλικής δραστηριότητας σε ηλεκτροεγκεφαλογραφήματαΓαλάνης, Δημήτριος 10 October 2008 (has links)
Σκοπός της εργασίας είναι η ανάπτυξη μεθόδου εντοπισμού εγκεφαλικών ρυθμών στο χρόνο χρησιμοποιώντας περιορισμούς που στηρίζονται στα νευροφυσιολογικά χαρακτηριστικά του κάθε υθμού τόσο στο πεδίο του χώρου (spatial constraints) όσο και στο πεδίο της συχνότητας (frequency constraints). Η μέθοδος στηρίζεται στην τεχνική ανάλυσης σε ανεξάρτητες συνιστώσες (ICA) και δεν απαιτεί πολυκάναλες καταγραφές (MEG). Πιθανές εφαρμογές περιλαμβάνουν τον εντοπισμό α-ρυθμού, επιληπτικών κρίσεων, μ-ρυθμού και ρυθμών κυρίαρχων στα στάδια του ύπνου. Η προτεινόμενη μέθοδος μπορεί να χρησιμοποιηθεί για την ανάλυση καταγραφών ΗΕΓ τόσο σε πραγματικό χρόνο (online) όσο και σε προαποθηκευμένα δεδομένα (offline). / The goal of the present thesis is the development of a method for temporal detection of electrophysiological brain rhythms, using constraints based on neurophysiological, spatial and frequency characteristics of every rhythm. The method is based on Independent Component Analysis (ICA) and does not require multichannel recordings (MEG). Possible applications include temporal detection of α-rhythm, μ-rhythm and sleep dominant rhythms. The proposed method can be used in both online and offline EEG analysis.
|
6 |
Behavioural Studies and Computational Models Exploring Visual Properties that Lead to the First Floral Contact by BumblebeesOrbán, Levente L. 16 April 2014 (has links)
This dissertation explored the way in which bumblebees' visual system helps them discover their first flower. Previous studies found bees have unlearned preferences for parts of a flower, such as its colour and shape. The first study pitted two variables against each other: pattern type: sunburst or bull's eye, versus the location of the pattern: shapes appeared peripherally or centrally. We observed free-flying bees in a flight cage using Radio-Frequency Identification (RFID) tracking. The results show two distinct behavioural preferences: Pattern type predicts landing: bees prefer radial over concentric patterns, regardless of whether the radial pattern is on the perimeter or near the centre of the flower. Pattern location predicts exploration: bees were more likely to explore the inside of artificial flowers if the shapes were displayed near the centre of the flower, regardless of whether the pattern was radial or concentric. As part of the second component, we implemented a mathematical model aimed at explaining how bees come to prefer radial patterns, leafy backgrounds and symmetry. The model was based on unsupervised neural networks used to describe cognitive mechanisms. The results captured with the results of multiple behavioural experiments. The model suggests that bees choose computationally "cheaper" stimuli, those that contain less information. The third study tested the computational load hypothesis generated by the artificial neural networks. Visual properties of symmetry, and spatial frequency were tested. Studying free-flying bees in a flight cage using motion-sensitive video recordings, we found that bees preferred 4-axis symmetrical patterns in both low and high frequency displays.
|
7 |
Heart Rate Variability Extraction from Video SignalsAlghoul, Karim January 2015 (has links)
Heart Rate Variability (HRV) analysis has been garnering attention from researchers due to its wide range of applications. Medical researchers have always been interested in Heart Rate (HR) and HRV analysis, but nowadays, investigators from variety of other fields are also probing the subject. For instance, variation in HR and HRV is connected to emotional arousal. Therefore, knowledge from the fields of affective computing and psychology, can be employed to devise machines that understand the emotional states of humans. Recent advancements in non-contact HR and HRV measurement techniques will likely further boost interest in emotional estimation through . Such measurement methods involve the extraction of the photoplethysmography (PPG) signal from the human's face through a camera. The latest approaches apply Independent Component Analysis (ICA) on the color channels of video recordings to extract a PPG signal. Other investigated methods rely on Eulerian Video Magnification (EVM) to detect subtle changes in skin color associated with PPG.
The effectiveness of the EVM in HR estimation has well been established. However, to the best of our knowledge, EVM has not been successfully employed to extract HRV feature from a video of a human face. In contrast, ICA based methods have been successfully used for HRV analysis. As we demonstrate in this thesis, these two approaches for HRV feature extraction are highly sensitive to noise. Hence, when we evaluated them in indoor settings, we obtained mean absolute error in the range of 0.012 and 28.4.
Therefore, in this thesis, we present two approaches to minimize the error rate when estimating physiological measurements from recorded facial videos using a standard camera. In our first approach which is based on the EVM method, we succeeded in extracting HRV measurements but we could not get rid of high frequency noise, which resulted in a high error percentage for the result of the High frequency (HF) component. Our second proposed approach solved this issue by applying ICA on the red, green and blue (RGB) colors channels and we were able to achieve lower error rates and less noisy signal as compared to previous related works. This was done by using a Buterworth filter with the subject's specific HR range as its Cut-Off.
The methods were tested with 12 subjects from the DISCOVER lab at the University of Ottawa, using artificial lights as the only source of illumination. This made it a challenge for us because artificial light produces HF signals which can interfere with the PPG signal. The final results show that our proposed ICA based method has a mean absolute error (MAE) of 0.006, 0.005, 0.34, 0.57 and 0.419 for the mean HR, mean RR, LF, HF and LF/HF respectively. This approach also shows that these physiological parameters are highly correlated with the results taken from the electrocardiography (ECG).
|
8 |
Behavioural Studies and Computational Models Exploring Visual Properties that Lead to the First Floral Contact by BumblebeesOrbán, Levente L. January 2014 (has links)
This dissertation explored the way in which bumblebees' visual system helps them discover their first flower. Previous studies found bees have unlearned preferences for parts of a flower, such as its colour and shape. The first study pitted two variables against each other: pattern type: sunburst or bull's eye, versus the location of the pattern: shapes appeared peripherally or centrally. We observed free-flying bees in a flight cage using Radio-Frequency Identification (RFID) tracking. The results show two distinct behavioural preferences: Pattern type predicts landing: bees prefer radial over concentric patterns, regardless of whether the radial pattern is on the perimeter or near the centre of the flower. Pattern location predicts exploration: bees were more likely to explore the inside of artificial flowers if the shapes were displayed near the centre of the flower, regardless of whether the pattern was radial or concentric. As part of the second component, we implemented a mathematical model aimed at explaining how bees come to prefer radial patterns, leafy backgrounds and symmetry. The model was based on unsupervised neural networks used to describe cognitive mechanisms. The results captured with the results of multiple behavioural experiments. The model suggests that bees choose computationally "cheaper" stimuli, those that contain less information. The third study tested the computational load hypothesis generated by the artificial neural networks. Visual properties of symmetry, and spatial frequency were tested. Studying free-flying bees in a flight cage using motion-sensitive video recordings, we found that bees preferred 4-axis symmetrical patterns in both low and high frequency displays.
|
9 |
Real Time Ballistocardiogram Artifact Removal in EEG-fMRI Using Dilated Discrete Hermite TransformMahadevan, Anandi January 2008 (has links)
No description available.
|
10 |
Αυτόματος διαχωρισμός ακουστικών σημάτων που διαδίδονται στο ανθρώπινο σώμα και λαμβάνονται από πιεζοκρυστάλλους κατά την διάρκεια ύπνουΒογιατζή, Ελένη 13 October 2013 (has links)
Στο πλαίσιο της εργασίας αυτής πραγματοποιείται ανάλυση και εφαρμογή του
διαχωρισμού ακουστικών σημάτων, τα οποία έχουν ληφθεί από το ανθρώπινο σώμα,
όταν αυτό βρίσκεται σε κατάσταση ύπνου. Τα σήματα αυτά έχουν ληφθεί με τη βοήθεια
μιας συσκευής πιεζοκρυστάλλων και ο διαχωρισμός τους επιτυγχάνεται με τη μέθοδο
Ανάλυσης Ανεξάρτητων Συνιστωσών (ICA). Κύριος σκοπός όλων των παραπάνω είναι να
χρησιμοποιηθεί η εν λόγω μεθοδολογία στη διάγνωση της αποφρακτικής άπνοιας (OSA).
Στο πρώτο κεφάλαιο, παρουσιάζεται αναλυτικά η μέθοδος ICA και το μαθηματικό μοντέλο
που την περιγράφει, όπως επίσης και όλα τα βήματα προεπεξεργασίας της. Στη συνέχεια
αναλύεται διεξοδικά η λειτουργία του αλγορίθμου FastICA και οι ιδιότητες του, με τον
οποίο υλοποιείται το πειραματικό μέρος της εργασίας αυτής. Στο δεύτερο κεφάλαιο,
μελετάται η ασθένεια της αποφρακτικής άπνοιας (OSA), οι παράγοντες και η παθολογία
της καθώς και το κύριο διαγνωστικό σύμπτωμα της: το ροχαλητό. Ύστερα, πραγματεύεται
την διάγνωση και τους γνωστότερους τρόπους θεραπείας αυτής της νόσου και τελικά τη
μέθοδο του Snoring Detection. Στο τρίτο κεφάλαιο γίνεται μια εισαγωγή στον
πιεζοηλεκτρισμό, και μία μελέτη του πιεζοηλεκτρικού φαινομένου και του μαθηματικού
του μοντέλου. Ακολουθεί αναφορά των ειδών πιεζοηλεκτρικών αισθητήρων με τους
οποίους λαμβάνονται τα σήματα που εξετάζονται σε αυτή την εργασία. Στο επόμενο
κεφάλαιο γίνεται μία σύνδεση των δεδομένων θεωρίας που αναφέρονται στα
προηγούμενα κεφάλαια και μία εισαγωγή στην πειραματική μέθοδο. Στο κεφάλαιο πέντε
παρατίθενται κάποια παραδείγματα εφαρμογής του αλγορίθμου FastICA με τυχαία
σήματα, τα οποία έχουν σκοπό να δοκιμάσουν την απόδοση του. Στο κεφάλαιο έξι,
5
γίνεται η πειραματική διαδικασία όπου τώρα τα σήματα που διαχωρίζονται με τον
αλγόριθμο FastICA προέρχονται από το ανθρώπινο σώμα. Η υλοποίηση της γίνεται σε
Matlab. Έτσι, γίνεται εξαγωγή του ζητούμενου σήματος ροχαλητού και αναγράφονται
κάποια συμπεράσματα για την απόδοση του αλγορίθμου. Στο τέλος της εργασίας
παρατίθενται σε ένα παράρτημα όλοι οι κώδικες της MATLAB που χρησιμοποιήθηκαν για
την ολοκλήρωση του πειραματικού της μέρους στα κεφάλαια πέντε και έξι. / In this particular thesis, analysis and application of separation of acoustic signals is carried
out. These signals have been taken from the human body in a sleeping state. They are
obtained by means of a piezocrystallic device and their separation is achieved by the
method of Independent Component Analysis (ICA). The main purpose of all this is to use
this methodology in order to diagnose the Obstructive Sleep Apnea (OSA). The first chapter
presents the method of ICA and the mathematical model that describes it as well as all the
pre-processing steps. Then it analyses, in detail, the algorithm FastICA, which is used in the
experimental part of this thesis and its properties. The second chapter studies the disease
of obstructive sleep apnea (OSA), its factors and its pathology and the major diagnostic
symptom: snoring. Then, it discusses the diagnosis and the best known ways of treating
this disease and eventually the method of Snoring Detection. The third chapter is an
introduction to piezoelectricity and a study of the piezoelectric effect and its mathematical
description. This is followed by a reference to the types of piezoelectric sensors which are
used to obtain the signals used in this paper. In chapter five we have listed some examplesapplications
of the FastICA algorithm with random signals, which are designed to test the
performance. Section six is where the experimental procedure takes place. The signals
derived from the human body are separated by the algorithm FastICA and the
implementation is done in Matlab. In addition, some conclusions regarding the
performance of the algorithm. At the end of this paper, all the MATLAB codes used for the
completion of the experimental part of the chapters five and six are listed in an Annex.
|
Page generated in 0.1148 seconds