Spelling suggestions: "subject:"plethysmography (PPG)""
1 |
A Machine Learning Method to Improve Non-Contact Heart Rate Monitoring Using RGB CameraGhanadian, Hamideh 12 December 2018 (has links)
Recording and monitoring vital signs is an essential aspect of home-based healthcare. Using contact sensors to record physiological signals can cause discomfort to patients, especially after prolonged use. Hence, remote physiological measurement approaches have attracted considerable attention as they do not require physical contact with the patient’s skin. Several studies proposed techniques to measure Heart Rate (HR) and Heart Rate Variability (HRV) by detecting the Blood Volume Pulse (BVP) from human facial video recordings while the subject is in a resting condition. In this thesis, we focus on the measurement of HR.
We adopt an algorithm that uses the Independent Component Analysis (ICA) to separate the source (physiological) signal from noise in the RGB channels of a facial video. We generalize existing methods to support subject movement during video recording. When a subject is moving, the face may be turned away from the camera. We utilize multiple cameras to enable the algorithm to monitor the vital sign continuously, even if the subject leaves the frame or turns away from a subset of the system’s cameras. Furthermore, we improve the accuracy of existing methods by implementing a light equalization scheme to reduce the effect of shadows and unequal facial light on the HR estimation, a machine learning method to select the most accurate channel outputted by the ICA module, and a regression technique to adjust the initial HR estimate. We systematically test our method on eleven subjects using four cameras. The proposed method decreases the RMSE by 27% compared to the state of the art in the rest condition. When the subject is in motion, the proposed method achieves a RMSE of 1.12 bpm using a single camera and RMSE of 0.96 bpm using multiple camera.
|
2 |
Heart Rate Variability Extraction from Video SignalsAlghoul, Karim January 2015 (has links)
Heart Rate Variability (HRV) analysis has been garnering attention from researchers due to its wide range of applications. Medical researchers have always been interested in Heart Rate (HR) and HRV analysis, but nowadays, investigators from variety of other fields are also probing the subject. For instance, variation in HR and HRV is connected to emotional arousal. Therefore, knowledge from the fields of affective computing and psychology, can be employed to devise machines that understand the emotional states of humans. Recent advancements in non-contact HR and HRV measurement techniques will likely further boost interest in emotional estimation through . Such measurement methods involve the extraction of the photoplethysmography (PPG) signal from the human's face through a camera. The latest approaches apply Independent Component Analysis (ICA) on the color channels of video recordings to extract a PPG signal. Other investigated methods rely on Eulerian Video Magnification (EVM) to detect subtle changes in skin color associated with PPG.
The effectiveness of the EVM in HR estimation has well been established. However, to the best of our knowledge, EVM has not been successfully employed to extract HRV feature from a video of a human face. In contrast, ICA based methods have been successfully used for HRV analysis. As we demonstrate in this thesis, these two approaches for HRV feature extraction are highly sensitive to noise. Hence, when we evaluated them in indoor settings, we obtained mean absolute error in the range of 0.012 and 28.4.
Therefore, in this thesis, we present two approaches to minimize the error rate when estimating physiological measurements from recorded facial videos using a standard camera. In our first approach which is based on the EVM method, we succeeded in extracting HRV measurements but we could not get rid of high frequency noise, which resulted in a high error percentage for the result of the High frequency (HF) component. Our second proposed approach solved this issue by applying ICA on the red, green and blue (RGB) colors channels and we were able to achieve lower error rates and less noisy signal as compared to previous related works. This was done by using a Buterworth filter with the subject's specific HR range as its Cut-Off.
The methods were tested with 12 subjects from the DISCOVER lab at the University of Ottawa, using artificial lights as the only source of illumination. This made it a challenge for us because artificial light produces HF signals which can interfere with the PPG signal. The final results show that our proposed ICA based method has a mean absolute error (MAE) of 0.006, 0.005, 0.34, 0.57 and 0.419 for the mean HR, mean RR, LF, HF and LF/HF respectively. This approach also shows that these physiological parameters are highly correlated with the results taken from the electrocardiography (ECG).
|
3 |
Photoplethysmography in noninvasive cardiovascular assessmentShi, Ping January 2009 (has links)
The electro-optic technique of measuring the cardiovascular pulse wave known as photoplethysmography (PPG) is clinically utilised for noninvasive characterisation of physiological components by dynamic monitoring of tissue optical absorption. There has been a resurgence of interest in this technique in recent years, driven by the demand for a low cost, compact, simple and portable technology for primary care and community-based clinical settings, and the advancement of computer-based pulse wave analysis techniques. PPG signal provides a means of determining cardiovascular properties during the cardiac cycle and changes with ageing and disease. This thesis focuses on the photoplethysmographic signal for cardiovascular assessment. The contour of the PPG pulse wave is influenced by vascular ageing. Contour analysis of the PPG pulse wave provides a rapid means of assessing vascular tone and arterial stiffness. In this thesis, the parameters extracted from the PPG pulse wave are examined in young adults. The results indicate that the contour parameters of the PPG pulse wave could provide a simple and noninvasive means to study the characteristic change relating to arterial stiffness. The pulsatile component of the PPG signal is due to the pumping action of the heart, and thus could reveal the circulation changes of a specific vascular bed. Heart rate variability (HRV) represents one of the most promising quantitative markers of cardiovascular control. Calculation of HRV from the peripheral pulse wave using PPG, called pulse rate variability (PRV), is investigated. The current work has confirmed that the PPG signal could provide basic information about heart rate (HR) and its variability, and highly suggests a good alternative to understanding dynamics pertaining to the autonomic nervous system (ANS) without the use of an electrocardiogram (ECG) device. Hence, PPG measurement has the potential to be readily accepted in ambulatory cardiac monitoring due to its simplicity and comfort. Noncontact PPG (NPPG) is introduced to overcome the current limitations of contact PPG. As a contactless device, NPPG is especially attractive for physiological monitoring in ambulatory units, NICUs, or trauma centres, where attaching electrodes is either inconvenient or unfeasible. In this research, a prototype for noncontact reflection PPG (NRPPG) with a vertical cavity surface emitting laser (VCSEL) as a light source and a high-speed PiN photodiode as a photodetector is developed. The results from physiological experiments suggest that NRPPG is reliable to extract clinically useful information about cardiac condition and function. In summary, recent evidence demonstrates that PPG as a simple noninvasive measurement offers a fruitful avenue for noninvasive cardiovascular monitoring. Key words: Photoplethysmography (PPG), Cardiovascular assessment, Pulse wave contour analysis, Arterial stiffness, Heart rate (HR), Heart rate variability (HRV), Pulse rate variability (PRV), Autonomic nervous system (ANS), Electrocardiogram (ECG).
|
4 |
Estimativa robusta da frequ?ncia card?aca a partir de sinais de fotopletismografia de pulsoBenetti, Tiago 31 August 2018 (has links)
Submitted by PPG Engenharia El?trica (engenharia.pg.eletrica@pucrs.br) on 2018-10-29T13:30:23Z
No. of bitstreams: 1
TIAGO BENETTI_DIS.pdf: 5038519 bytes, checksum: 95fa8d1b367b574eee27e772a55a9a49 (MD5) / Approved for entry into archive by Caroline Xavier (caroline.xavier@pucrs.br) on 2018-10-30T17:21:55Z (GMT) No. of bitstreams: 1
TIAGO BENETTI_DIS.pdf: 5038519 bytes, checksum: 95fa8d1b367b574eee27e772a55a9a49 (MD5) / Made available in DSpace on 2018-10-30T17:27:25Z (GMT). No. of bitstreams: 1
TIAGO BENETTI_DIS.pdf: 5038519 bytes, checksum: 95fa8d1b367b574eee27e772a55a9a49 (MD5)
Previous issue date: 2018-08-31 / Heart rate monitoring using Photoplethysmography (PPG) signals acquired from the individuals pulse has become popular due to emergence of numerous low cost wearable devices. However, monitoring during physical activities has obstacles because of the influence of motion artifacts in PPG signals. The objective of this work is to introduce a new algorithm capable of removing motion artifacts and estimating heart rate from pulse PPG signals. Normalized Least Mean Square (NLMS) and Recursive Least Squares (RLS) algorithms are proposed for an adaptive filtering structure that uses acceleration signals as reference to remove motion artifacts. The algorithm uses the Periodogram of the filtered signals to extract their heart rates, which will be used together with a PPG Signal Quality Index to feed the input of a Kalman Filter. Specific heuristics and the Quality Index collaborate so that the Kalman filter provides a heart rate estimate with high accuracy and robustness to measurement uncertainties. The algorithm was validated from the heart rate obtained from Electrocardiography signals and the proposed method with the RLS algorithm presented the best results with an absolute mean error of 1.54 beats per minute (bpm) and standard deviation of 0.62 bpm, recorded for 12 individuals performing a running activity on a treadmill with varying speeds. The results make the performance of the algorithm comparable and even better than several recently developed methods in this field. In addition, the algorithm presented a low computational cost and suitable to the time interval in which the heart rate estimate is performed. Thus, it is expected that this algorithm will improve the obtaining of heart rate in currently available wearable devices. / O monitoramento da frequ?ncia card?aca utilizando sinais de Fotopletismografia ou PPG (do ingl?s, Photopletismography) adquiridos do pulso de indiv?duos tem se popularizado devido ao surgimento de in?meros dispositivos wearable de baixo custo. No entanto, o monitoramento durante atividades f?sicas tem dificuldades em raz?o da influ?ncia de artefatos de movimento nos sinais de PPG. O objetivo deste trabalho ? introduzir um novo algoritmo capaz de remover artefatos de movimento e estimar a frequ?ncia card?aca de sinais de PPG de pulso. Os algoritmos do M?nimo Quadrado M?dio Normalizado ou NLMS (do ingl?s, Normalized Least Mean Square) e de M?nimos Quadrados Recursivos ou RLS (do ingl?s, Recursive Least Squares) s?o propostos para uma estrutura de filtragem adaptativa que utiliza sinais de acelera??o como refer?ncia para remover os artefatos de movimento. O algoritmo utiliza o Periodograma dos sinais filtrados para extrair suas frequ?ncias card?acas, que ser?o utilizadas juntamente com um ?ndice de Qualidade do Sinal de PPG para alimentar a entrada de um Filtro de Kalman. Heur?sticas espec?ficas e o ?ndice de Qualidade colaboram para que filtro de Kalman forne?a uma estimativa da frequ?ncia card?aca com alta acur?cia e robustez a incertezas de medi??o. O algoritmo foi validado a partir da frequ?ncia card?aca obtida de sinais de Eletrocardiografia e o m?todo proposto com o algoritmo RLS apresentou os melhores resultados com um erro m?dio absoluto de 1,54 batimentos por minuto (bpm) e desvio padr?o de 0,62 bpm, registrados para 12 indiv?duos realizando uma atividade de corrida em uma esteira com velocidades variadas. Os resultados tornam o desempenho do algoritmo compar?vel e at? mesmo melhor que v?rios m?todos desenvolvidos recentemente neste campo. Al?m disso, o algoritmo apresentou um custo computacional baixo e adequado ao intervalo de tempo em que a estimativa da frequ?ncia card?aca ? realizada. Dessa forma, espera-se que este algoritmo melhore a obten??o da frequ?ncia card?aca em dispositivos wearable atualmente dispon?veis.
|
Page generated in 0.0412 seconds