1 |
Trees With Two Disjoint Minimum Independent Dominating SetsHaynes, Teresa W., Henning, Michael A. 28 November 2005 (has links)
The independent domination number of a graph G, denoted i(G), is the minimum cardinality of a maximal independent set of G. A maximal independent set of cardinality i(G) in G we call an i(G)-set. In this paper we provide a constructive characterization of trees G that have two disjoint i(G)-sets.
|
2 |
A Characterization of I-Excellent TreesHaynes, Teresa W., Henning, Michael A. 06 April 2002 (has links)
The independent domination number of a graph G, denoted i(G), is the minimum cardinality of a maximal independent set of G. A maximal independent set of cardinality i(G) in G we call an i(G)-set. The graph G is called i-excellent if every vertex of G belongs to some i(G)-set. We provide a constructive characterization of i-excellent trees.
|
3 |
Strong Equality of Domination Parameters in TreesHaynes, Teresa W., Henning, Michael A., Slater, Peter J. 06 January 2003 (has links)
We study the concept of strong equality of domination parameters. Let P1 and P2 be properties of vertex subsets of a graph, and assume that every subset of V(G) with property P2 also has property P1. Let ψ1(G) and ψ2(G), respectively, denote the minimum cardinalities of sets with properties P1 and P2, respectively. Then ψ1(G) ≤ ψ2(G). If ψ1(G)=ψ2(G) and every ψ1(G)-set is also a ψ2(G)-set, then we say ψ1(G) strongly equals ψ2(G), written ψ1(G) = ψ2(G). We provide a constructive characterization of the trees T such that γ(T) = i(T), where γ(T) and i(T) are the domination and independent domination numbers, respectively. A constructive characterization of the trees T for which γ(T) = γt(T), where γt(T) denotes the total domination number of T, is also presented.
|
4 |
Trees With Equal Domination and Tree-Free Domination NumbersHaynes, Teresa W., Henning, Michael A. 01 June 2002 (has links)
The tree-free domination number y(G; -Fk), k ≥ 2, of a graph G is the minimum cardinality of a dominating set S in G such that the subgraph (S) induced by S contains no tree on k vertices as a (not necessarily induced) subgraph (equivalently, each component of (S) has cardinality less than k). When k = 2, the tree-free domination number is the independent domination number. We obtain a characterization of trees with equal domination and tree-free domination numbers. This generalizes a result of Cockayne et al. (A characterisation of (y,i)-trees. J. Graph Theory 34(4) (2000) 277-292).
|
5 |
Šachové úlohy v kombinatorice / Chessboard problems in combinatoricsChybová, Lucie January 2017 (has links)
This master thesis discusses various mathematical problems related to the placement of chess pieces. Solutions to the problems are mostly elementary (yet sometimes quite inventive), in some cases rely on basic knowledge of graph theory. We successively focus on different chess pieces and their tours on rectangular boards, and then examine the "independence" and "domination" of chess pieces on square boards. The text is complemented with numerous pictures illustrating particular solutions to given problems.
|
Page generated in 0.158 seconds