• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strong Equality of Domination Parameters in Trees

Haynes, Teresa W., Henning, Michael A., Slater, Peter J. 06 January 2003 (has links)
We study the concept of strong equality of domination parameters. Let P1 and P2 be properties of vertex subsets of a graph, and assume that every subset of V(G) with property P2 also has property P1. Let ψ1(G) and ψ2(G), respectively, denote the minimum cardinalities of sets with properties P1 and P2, respectively. Then ψ1(G) ≤ ψ2(G). If ψ1(G)=ψ2(G) and every ψ1(G)-set is also a ψ2(G)-set, then we say ψ1(G) strongly equals ψ2(G), written ψ1(G) = ψ2(G). We provide a constructive characterization of the trees T such that γ(T) = i(T), where γ(T) and i(T) are the domination and independent domination numbers, respectively. A constructive characterization of the trees T for which γ(T) = γt(T), where γt(T) denotes the total domination number of T, is also presented.

Page generated in 0.0577 seconds