• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 294
  • 43
  • 43
  • 39
  • 15
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • Tagged with
  • 626
  • 167
  • 99
  • 83
  • 80
  • 73
  • 72
  • 72
  • 65
  • 62
  • 60
  • 55
  • 55
  • 53
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Inelastic light scattering in low dimensional semiconductors

Watt, Morag January 1988 (has links)
No description available.
282

Lateral surface superlattices in strained InGaAs layers

Milton, Brian E. January 2000 (has links)
No description available.
283

Processing and magneto-transport studies of InAs/GaSb low dimensional structures

Javed Rehman, Yasin January 1999 (has links)
No description available.
284

Vertical transport and interband luminescence in InAs/GaSb heterostructures

Roberts, Matthew January 2001 (has links)
No description available.
285

Embedded active and passive methods to reduce the junction temperature of power and RF electronics

Chen, Xiuping 22 May 2014 (has links)
AlGaN/GaN high electron mobility transistors (HEMTs) have been widely used for high power and high frequency RF communications due to their fast switching and large current handling capabilities. The reliability of such devices is strongly affected by the junction temperature where the highest magnitude occurs in a local region on the drain side edge of the gate called the hotspot. Thus, thermal management of these devices remains a major concern in the design and reliability of systems employing AlGaN/GaN HEMTs. Due to the large power densities induced in these devices locally near the drain side edge of the gate, it is clear that moving thermal management solutions closer to the heat generation region is critical in order to reduce the overall junction temperature of the device. In this work, we explore the use of embedded microchannel cooling in the substrate of AlGaN/GaN HEMTs made on Si and SiC substrates and compare them to passive cooling techniques using Si, SiC, and diamond substrates. In addition, the impact of cooling fluids and harsh environmental conditions were considered. The study was performed using a combination of CFD and finite volume analysis on packaged AlGaN/GaN HEMTs. Active cooling using embedded microchannels were shown to have a significant impact on the heat dissipation over the passive cooling methods, approaching or exceeding that of diamond cooled devices. For vertical power devices (IGBT), embedded microchannels in the power electronics substrates were explored. In both the power devices and lateral AlGaN/GaN HEMTs, the use of embedded microchannels with nonlinear channel geometries was shown to be the most effective in terms of reducing the device junction temperature while minimizing the pumping power required.
286

Charting New Territory in Bis(imino)pyridine Coordination Chemistry

Jurca, Titel 17 July 2012 (has links)
This work was initially launched to study the synthesis of low-valent group 13 compounds bearing the bis(imino)pyridine ligand framework. Since its inception, this project has grown beyond the boundaries of group 13 to include low valent tin, silver, and rhenium. Alongside the reports of novel coordination compounds, we utilized computational chemistry to uncover unprecedented interactions which challenge conventional concepts of bonding. Synthesis, characterization, and complimentary computational studies are presented herein. Chapter 1 presents a historical overview of the bis(imino)pyridine ligand as well as our synthetic methodology and characterization of new ligand variants we have contributed to the literature. Chapter 2 presents the synthesis of a series of In(I) and In(III) bis(imino)pyridine complexes with varied sterics. Ligand-metal interaction and effect of ligand steric bulk on complex stability, as well as computational studies highlighting weak covalent interactions will be discussed. Chapter 3 presents the synthesis of Ga(III) bis(imino)pyridine complexes. Reactivity with “GaI” synthon as well as varied-stoichiometry one-pot synthesis attempts to generate low valent Ga-bis(imino)pyridine complexes will be discussed. Chapter 4 presents the synthesis of a series of Tl(I) bis(imino)pyridine complexes with varied sterics analogous to the approach taken with indium(I). Unprecedented weak ligand-metal as well as Tl-arene interactions will be discussed. Chapter 5 presents the synthesis of a series of Sn(II) bis(imino)pyridine complexes with varied sterics and halide substituents. Preferential cation-anion pair formation and attempted reactivity will be discussed. Chapter 6 presents the synthesis of a series of Ag(I) bis(imino)pyridine complexes with varied sterics. Resulting ligand-metal interactions as well as reactivity towards Lewis basic donor ligands will be discussed. Chapter 7 presents the synthesis of first crystallographically authenticated examples of rhenium(I) pincer complexes utilizing the bis(imino)pyridine ligand. Chapter 8 presents a general conclusion to the work.
287

A study on indium joints for low-temperature microelectronics interconnections

Cheng, Xiaojin January 2011 (has links)
For microelectronics used in the low-temperature applications, the understanding of their reliability and performance has become an important research subject characterised as electronics to serve under the severe or extreme service conditions. Along with the impact from the increased miniaturization of devices, the various properties and the relevant thermo-mechanical response of the interconnection materials to temperature excursion at micro-scale become a critical factor which can affect the reliable performance of microelectronics in various applications. Pure indium as an excellent interconnection material has been used in pixellated detector systems, which are required to be functional at cryogenic temperatures. This thesis presents an extensive investigation into the thermo-mechanical properties of indium joints as a function of microstructure, strain (loading histories-dependent) and temperature (service condition-sensitive), specifically in the areas as follows: (i) the interfacial reactions and evolution between indium and substrate during the reflow process (liquid-solid) and thermal aging (solid-solid) stages by taking low-temperature cycling into account; (ii) determination of the effects of joint thickness and the types of substrate (e.g. Cu or Ni) on the mechanical properties of indium joints, and the stress- and temperature-dependent creep behaviour of indium joints; (iii) the establishment of a constitutive relationship for indium interconnects under a wide range of homologous temperature changes that was subsequently implemented into an FE model to allow the analysis of the evolution of thermally-induced stresses and strains associated with a hybrid pixel detector.
288

Optoelectronic and Structural Properties of Group III-Nitride Semiconductors Grown by High Pressure MOCVD and Migration Enhanced Plasma Assisted MOCVD

Matara Kankanamge, Indika 15 December 2016 (has links)
The objective of this dissertation is to understand the structural and optoelectronic properties of group III-nitride materials grown by High-Pressure Metal Organic Chemical Vapor Deposition (HP-MOCVD) and Migration Enhanced Plasma Assisted MOCVD by FTIR reflectance spectroscopy, Raman spectroscopy, X-ray diffraction, and Atomic Force Microscopy. The influence of the substrates/templates (Sapphire, AlN, Ga-polar GaN, N-polar GaN, n-GaN, and p-GaN) on the free carrier concentration, carrier mobility, short-range crystalline ordering, and surface morphology of the InN layers grown on HP-MOCVD were investigated using those techniques. The lowest carrier concentration of 7.1×1018 cm-3 with mobility of 660 cm2V-1s-1 was found in the InN film on AlN template, by FTIR reflectance spectra analysis. Furthermore, in addition to the bulk layer, an intermediate InN layers with different optoelectronic properties were identified in these samples. The best local crystalline order was observed in the InN/AlN/Sapphire by the Raman E2 high analysis. The smoothest InN surface was observed on the InN film on p-GaN template. The influence of reactor pressures (2.5–18.5 bar) on the long-range crystalline order, in plane structural quality, local crystalline order, free carrier concentration, and carrier mobility of the InN epilayers deposited on GaN/sapphire by HP-MOCVD has also been studied using those methods. Within the studied process parameter space, the best material properties were achieved at a reactor pressure of 12.5 bar and a group-V/III ratio of 2500 with a free carrier concentration of 1.5x1018 cm-3, a mobility in the bulk InN layer of 270 cm2 V-1s-1 and the Raman (E2 high) FWHM of 10.3 cm-1. The crystalline properties, probed by XRD 2θ–ω scans have shown an improvement with the increasing reactor pressure. The effect of an AlN buffer layer on the free carrier concentration, carrier mobility, local crystalline order, and surface morphology of InN layers grown by Migration-Enhanced Plasma Assisted MOCVD were also investigated. Here, the AlN nucleation layer was varied to assess the physical properties of the InN layers. This study was focused on optimization of the AlN nucleation layer (e.g. temporal precursor exposure, nitrogen plasma exposure, and plasma power) and its effect on the InN layer properties.
289

Efficiency droop mitigation and quantum efficiency enhancement for nitride Light-Emitting Diodes

Li, Xing 25 July 2012 (has links)
In the past decade, GaN-based nitrides have had a considerable impact in solid state lighting and high speed high power devices. InGaN-based LEDs have been widely used for all types of displays in TVs, computers, cell phones, etc. More and more high power LEDs have also been introduced in general lighting market. Once widely used, such LEDs could lead to the decrease of worldwide electrical consumption for lighting by more than 50% and reduce total electricity consumption by > 10%. However, there are still challenges for current state-of-the art InGaN-based LEDs, including ‘efficiency droop’ issues that cause output power quenching at high current injection levels (> 100 A/cm2). In this dissertation, approaches were investigated to address the major issues related to state-of-the-art nitride LEDs, in particular related to (1) efficiency droop investigations on m-plane and c-plane LEDs: enhanced matrix elements in m-plane LEDs and smaller hole effective mass favors the hole transport across the active region so that m-plane LEDs exhibit 30% higher quantum efficiency and negligible efficiency droop at high injection levels compared to c-plane counterparts; (2) engineering of InGaN active layers for achieving high quantum efficiency and minimal efficiency droop: lower and thinner InGaN barrier enhance hole transport as well as improves the quantum efficiencies at injection levels; (3) double-heterostructure (DH) active regions: various thicknesses were also investigated in order to understand the electron and hole recombination mechanism. We also present that using multi-thin DH active regions is a superior approach to enhance the quantum efficiency compared with simply increasing the single DH thickness or the number of quantum wells (QWs, 2 nm-thick) in multi-QW (MQW) LED structures due to the better material quality and higher density of states. Additionally, increased thickness of stair-case electron injectors (SEIs) has been demonstrated to greatly mitigate electron overflow without sacrificing material quality of the active regions. Finally, approaches to enhance light extraction efficiency including using Ga doped ZnO as the p-GaN contact layer to improve light extraction as well as current spreading was introduced.
290

Synthesis and Characterization of Novel Nanoparticles for Use as Photocatalytic Probes and Radiotracers

Pradhan, Anindya 16 May 2008 (has links)
Two novel synthetic routes to formation of gold-magnetite nanoparticles have been designed. Treatment of preformed magnetite nanoparticles with ultrasound in aqueous media with dissolved tetrachloroauric acid resulted in the formation of gold-magnetite nanocomposite materials. The other route involved irradiation of preformed magnetite nanoparticles by UV light in aqueous media with dissolved tetrachloroauric acid. This method resulted in the formation of gold-magnetite nanocomposite materials. These materials maintained the morphology of the original magnetite particles. The morphology of the gold particles could be controlled by adjusting experimental parameters, like addition of small amounts of solvent modifiers such as methanol, diethylene glycol, and oleic acid as well as variation of the concentration of the tetrachloroauric acid solution and time of the reaction. The nanocomposite materials were magnetic and exhibited optical properties similar to gold nanoparticles. Since we were not able to directly synthesize core shell gold magnetite nanoparticles, TiO2 was used as a bridging material. TiO2 nanoparticles with embedded magnetite were suspended in aqueous HAuCl4 and irradiated with ultraviolet light to photodeposit gold. The degree of gold coating and the wavelength of absorbance could be controlled by adjusting concentration of HAuCl4. Absorbance maxima were between 540-590 nm. Particles exhibited superparamagnetic properties (blocking temperature ~170 K) whether or not coated with gold. These particles have potential applications as drug delivery agents, magnetic imaging contrast agents, and magnetically separatable photocatalysts with unique surface properties. Another goal was to synthesize and characterize indium doped magnetite nanoparticles for application as radiotracers for in vivo fate studies. The labeled particles will be useful for determination of pharmacological behavior in biological systems. Indium doped magnetite particles with varying size and surface chemistry were synthesized with wet chemical techniques. The synthesized nanoparticles were characterized in terms of the size and shape with the help of TEM, the elemental composition by ICP and EDS, the crystal structure by XRD and magnetic properties by SQUID measurements. It was found that the indium loading could be controlled even though the magnetic properties were similar to undoped magnetite.

Page generated in 0.0407 seconds