• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Induced defenses in apple fruits: linking fruit chemistry, quality, and plant-insect-microbe interactions

Meakem, Victoria 24 June 2020 (has links)
Plants synthesize a diverse array of phytochemicals in response to interactions with herbivores, pathogens, and commensal microbes. These phytochemicals may simultaneously enhance crop defense and quality, representing a potential pest management strategy. However, plant chemical responses to different types and levels of biotic interactions remain unclear, particularly in fruit tissues, and the feasibility of inducing these defenses through elicitor application in field environments also requires further examination. Thus, apples were used to 1) examine the impact of distinct communities of biotic interactions among plants, insects, and microbes on fruit phenolic chemistry, and 2) examine the impact of the phytohormones jasmonic acid (JA), salicylic acid (SA), and melatonin (M) on fruit phenolic chemistry and resistance against pests and pathogens. Ultimately, phenolic defenses were induced by fungal damage primarily in ripe pulp tissues, where there was also a positive relationship between fungal endophyte and phenolic diversity, supporting a broad hypothesis that chemical diversity may increase with biotic diversity. Additionally, two compounds were upregulated in response to fungal damage: chlorogenic acid and an unidentified benzoic acid. Elicitor applications did not affect phenolic chemistry, but the combined application of JA-SA analogues had some chemical or physical effect, as this treatment reduced emergence of the insect Rhagoletis pomonella. Thus, fruit induced defenses may be tissue-specific and subject to temporal, environmental, or genotypic variation. Overall, these chapters examined the relationship between biotic interactions and induced fruit chemistry, with the goal of improving understanding of plant-microbe-insect interactions and incorporating these interactions into more sustainable agricultural practices. / Master of Science / Plants may produce a diverse array of defensive phytochemical compounds in response to interactions with herbivores, pathogens, and the microorganisms that reside within plant tissues. These phytochemicals may simultaneously improve crop defenses and quality, representing a potential agricultural management strategy. However, plant chemical responses to different types and levels of biotic interactions are not well-understood, particularly in fruit tissues, and the feasibility of activating these defenses in fruits through the application of phytohormones that regulate defense pathways as a potential management strategy also requires further examination. Thus, apples were used to 1) examine the impact of distinct communities of biotic interactions among plants, insects, and microbes on fruit chemistry, focusing on phenolics, an important class of phytochemical compounds, and 2) examine the impact of the defense-activating phytohormones jasmonic acid (JA), salicylic acid (SA), and melatonin (M) on fruit phenolic chemistry and resistance against pests and pathogens. Ultimately, phenolic defenses were activated by fungal damage primarily in ripe pulp tissues, where there was also a positive relationship between fungal endophyte and phenolic diversity, supporting a broad hypothesis that chemical diversity may increase with biotic diversity. Additionally, two compounds were produced in response to fungal damage: chlorogenic acid and an unidentified benzoic acid. Phytohormone applications did not affect phenolic chemistry, but the application of the combined JA-SA analogues had some chemical or physical effect, as this treatment reduced emergence of the insect Rhagoletis pomonella. Overall, the phytochemical defenses activated by biotic interactions in fruits may occur primarily in certain tissue types, and may also vary due to environmental conditions, time of year, or plant species. These chapters examined the relationship between fruit chemistry and biotic interactions with the goal of improving understanding of plant-microbe-insect interactions and incorporating these interactions into more sustainable agricultural practices.
2

Interação formiga-planta: impacto da variação na oferta de néctar extrafloral sobre o forrageamento de formigas / Ant-plant interaction: impact of variation in extrafloral nectar supply on ant foraging

Soares, Eduardo Calixto 24 July 2015 (has links)
As plantas, produtores da base das cadeias tróficas, apresentam diversos tipos de defesas contra a ação de consumidores, os herbívoros, podendo ser defesas físicas, químicas e bióticas. Nas defesas bióticas, plantas fornecem recursos alimentares (e.g. néctar extrafloral) e/ou moradia para predadores que em troca podem fornecer proteção contra herbívoros. Assim, a partir de comportamentos agressivos e/ou de patrulha, formigas são consideradas os principais protetores de plantas. Nessa perspectiva, a presente dissertação buscou investigar a influência que o néctar extrafloral tem sob a interação formiga-planta em uma área de Cerrado. O estudo foi realizado na Reserva Ecológica do Clube Caça e Pesca Itororó de Uberlândia, no município de Uberlândia, MG, em uma área com fitofisionomia de cerrado sentido restrito. A espécie de planta utilizada neste estudo foi Qualea multiflora (Vochysiaceae), uma das espécies mais abundantes do Cerrado, a qual apresenta nectários extraflorais (NEFs) na base do pecíolo foliar e nas inflorescências. Nossas hipóteses principais foram: a) que formigas visitantes dos NEFs de Q. multiflora impactam positivamente a planta, reduzindo a ação de herbívoros; b) que essas interações formigas-plantas são modificadas ao longo do desenvolvimento fenológico das folhas das plantas; c) que diferentes níveis de herbivoria nas plantas produzem também diferentes reações nas formigas visitantes; e d) que diferentes estruturas das plantas apresentam diferentes níveis de defesas. Os resultados demonstrados no Capítulo 1 comprovam que a herbivoria foliar em Q. multiflora foi baixa e similar nos diferentes estágios de desenvolvimento da folha, mostrando que as defesas expressas pela planta são eficientes. Das três defesas foliares avaliadas durante o desenvolvimento foliar, observou-se que a densidade de tricomas apresenta pico de efetividade no início do desenvolvimento, a defesa biótica (produtividade dos NEFs) apresenta pico de efetividade no período intermediário do desenvolvimento, e a dureza foliar apresenta pico de efetividade no período em que a folha já está adulta. Esses resultados comprovam a eficiência da variação temporal nas defesas foliares de Q. multiflora, o que interfere diretamente na interação formiga-planta. No Capítulo 2, foi mostrado que NEFs localizados em inflorescências produzem néctar mais volumoso e energético que atrai maior quantidade de formigas comparado ao néctar produzido pelos NEFs foliares. A produtividade e a atratividade dos NEFs, assim como o forrageamento de formigas, também foram afetados por variações na herbivoria (simulada experimentalmente). Esses resultados demonstram que Q. multiflora sincroniza suas defesas foliares ao longo do tempo garantindo a proteção contra herbívoros e que essas defesas (como evidenciado para defesa biótica) podem ser alteradas de acordo com o valor e probabilidade de ataque de suas estruturas. / Plants, producers of food chains, have different types of defenses against action of consumers, herbivores, which can be physical, chemical and biotic defenses. In biotic defenses, plants provide food resources (e.g. extrafloral nectar) and/or shelter for predators, which in turn may provide protection against herbivores. Thus, from patrol and/or aggressive behavior, ants are considered main plants protectors. From this perspective, the present work aimed to investigate the influence that extrafloral nectar has under ant-plant interaction in an area of Cerrado. The study was conducted in Reserva Ecológica do Clube Caça e Pesca Itororó de Uberlândia, in Uberlândia, MG, in an area with cerrado stricto sensu vegetation. The plant species used was Qualea multiflora (Vochysiaceae), one of the most abundant species of Cerrado, which has extrafloral nectaries (EFNs) at the base of leaf petiole and in inflorescences. Our main assumptions were: a) EFNs visitors ants of Q. multiflora positively impact the plant reducing the herbivore action; b) these ants-plants interactions are modified along the phenological development of plant leaves; c) different herbivory levels in plants produce different reactions in visitors ants; and d) different plant structures have different defenses levels. Results presented in Chapter 1 show that foliar herbivore in Q. multiflora was low and similar to different stages of leaf development, showing that expressed plant defenses are effective. Of the three foliar defenses evaluated during leaf development, it was observed that density of trichomes presents effectiveness peak in early development, biotic defense (EFNs productivity) in intermediated period of development and leaf toughness in the period in which the leaf is adult. These results show the efficacy of temporal variation in foliar defenses in Q. multiflora, which directly affects ant-plant interaction. In Chapter 2, it was shown that EFNs located in inflorescences produce nectar more quantitative and qualitative, which attract large amount of ants, than EFNs located in leaves. EFNs productivity and attractiveness, as well as ants foraging, were also influenced by herbivory variation (experimentally simulated). These results show that Q. multiflora synchronizes its leaf defenses over time ensuring protection against herbivores and that these defenses (as evidenced for biotic defense) can be changed according to value and attack probability of their structures.
3

Aquatic plant-herbivore interactions across multiple spatial scales.

Morrison, Wendy Elizabeth 21 May 2010 (has links)
For decades scientists believed that herbivory had minimal impact on freshwater ecosystems. We now know that herbivory in freshwater systems equals or exceeds herbivory in terrestrial and marine systems. In extreme cases, herbivores can change clear, macrophyte dominated ecosystems into turbid plankton dominated ecosystems. Even though research on plant-herbivore interactions in freshwater systems has increased, there is still much that is unknown. This thesis is comprised of four studies investigating freshwater plant-herbivore interactions across multiple spatial scales. The first study investigated how induced chemical defenses in Cabomba caroliniana suppress herbivore consumption and growth as well as how this herbivore-generated change in plant chemistry affects the growth of plant associated microbes. At the spatial scale of individual ponds or lakes, consumers that induce their host plants may also be indirectly affecting other consumers and microbial pathogens via changes in this shared resource. The second study moves to an ecosystem scale and investigates how exotic versus native apple snails may impact Everglades' habitats. We investigated plant preference, consumption, growth and conversion efficiencies in the singly native apple snail to occur in the U.S. (Pomacea paludosa) versus four introduced species (P. canaliculata, P. insularum, P. haustrum and P. diffusa). We found that even though plant preferences are similar, invasive snails tend to eat more, grow more rapidly, and sometimes more efficiently than natives. This suggests that invasive species could have a large impact on the environment, especially the abundance of submerged plants. The third study investigated how palatability of freshwater plants varies with latitude (i.e. geographic scale). Increased herbivory at lower latitudes is hypothesized to select for increased plant defenses, which has been shown to be true for tropical forests, salt marshes, and seaweeds. When we contrasted eight confamilial plants collected in Indiana versus Southern Florida, three of four herbivores significantly preferred northern plants. When we evaluated a second set of plants collected from Indiana versus Central Florida, only one of three herbivores preferred the northern plants. Overall, our results suggest a preference for northern plants, but the strength of this relationship was variable. We hypothesize that this variability may be driven by 1) local variance in herbivore pressure that creates variance in plant defenses, and/or 2) the effect of winter length on the survival and feeding rate of herbivores. The final study expanded to a world scale, and investigated herbivore preference for native vs exotic plants. We found that both N. American crayfish and S. American snails preferred exotic plants over confamilial natives, despite responding to different plant characteristics. The single species of apple snail that occurs in N. American showed no preference for native or exotic plants from a N. American perspective, but instead exhibited preferences that correlated with its history of evolution in S. America. As the N. American species is a sister species of the S. American snails, feeding by the N. American snail appears more affected by its S. American lineage than its recent history in N. America. This suggests that phylogenetic legacy will affect choices of the herbivore as well as resistance or susceptibility of plants.
4

Interação formiga-planta: impacto da variação na oferta de néctar extrafloral sobre o forrageamento de formigas / Ant-plant interaction: impact of variation in extrafloral nectar supply on ant foraging

Eduardo Calixto Soares 24 July 2015 (has links)
As plantas, produtores da base das cadeias tróficas, apresentam diversos tipos de defesas contra a ação de consumidores, os herbívoros, podendo ser defesas físicas, químicas e bióticas. Nas defesas bióticas, plantas fornecem recursos alimentares (e.g. néctar extrafloral) e/ou moradia para predadores que em troca podem fornecer proteção contra herbívoros. Assim, a partir de comportamentos agressivos e/ou de patrulha, formigas são consideradas os principais protetores de plantas. Nessa perspectiva, a presente dissertação buscou investigar a influência que o néctar extrafloral tem sob a interação formiga-planta em uma área de Cerrado. O estudo foi realizado na Reserva Ecológica do Clube Caça e Pesca Itororó de Uberlândia, no município de Uberlândia, MG, em uma área com fitofisionomia de cerrado sentido restrito. A espécie de planta utilizada neste estudo foi Qualea multiflora (Vochysiaceae), uma das espécies mais abundantes do Cerrado, a qual apresenta nectários extraflorais (NEFs) na base do pecíolo foliar e nas inflorescências. Nossas hipóteses principais foram: a) que formigas visitantes dos NEFs de Q. multiflora impactam positivamente a planta, reduzindo a ação de herbívoros; b) que essas interações formigas-plantas são modificadas ao longo do desenvolvimento fenológico das folhas das plantas; c) que diferentes níveis de herbivoria nas plantas produzem também diferentes reações nas formigas visitantes; e d) que diferentes estruturas das plantas apresentam diferentes níveis de defesas. Os resultados demonstrados no Capítulo 1 comprovam que a herbivoria foliar em Q. multiflora foi baixa e similar nos diferentes estágios de desenvolvimento da folha, mostrando que as defesas expressas pela planta são eficientes. Das três defesas foliares avaliadas durante o desenvolvimento foliar, observou-se que a densidade de tricomas apresenta pico de efetividade no início do desenvolvimento, a defesa biótica (produtividade dos NEFs) apresenta pico de efetividade no período intermediário do desenvolvimento, e a dureza foliar apresenta pico de efetividade no período em que a folha já está adulta. Esses resultados comprovam a eficiência da variação temporal nas defesas foliares de Q. multiflora, o que interfere diretamente na interação formiga-planta. No Capítulo 2, foi mostrado que NEFs localizados em inflorescências produzem néctar mais volumoso e energético que atrai maior quantidade de formigas comparado ao néctar produzido pelos NEFs foliares. A produtividade e a atratividade dos NEFs, assim como o forrageamento de formigas, também foram afetados por variações na herbivoria (simulada experimentalmente). Esses resultados demonstram que Q. multiflora sincroniza suas defesas foliares ao longo do tempo garantindo a proteção contra herbívoros e que essas defesas (como evidenciado para defesa biótica) podem ser alteradas de acordo com o valor e probabilidade de ataque de suas estruturas. / Plants, producers of food chains, have different types of defenses against action of consumers, herbivores, which can be physical, chemical and biotic defenses. In biotic defenses, plants provide food resources (e.g. extrafloral nectar) and/or shelter for predators, which in turn may provide protection against herbivores. Thus, from patrol and/or aggressive behavior, ants are considered main plants protectors. From this perspective, the present work aimed to investigate the influence that extrafloral nectar has under ant-plant interaction in an area of Cerrado. The study was conducted in Reserva Ecológica do Clube Caça e Pesca Itororó de Uberlândia, in Uberlândia, MG, in an area with cerrado stricto sensu vegetation. The plant species used was Qualea multiflora (Vochysiaceae), one of the most abundant species of Cerrado, which has extrafloral nectaries (EFNs) at the base of leaf petiole and in inflorescences. Our main assumptions were: a) EFNs visitors ants of Q. multiflora positively impact the plant reducing the herbivore action; b) these ants-plants interactions are modified along the phenological development of plant leaves; c) different herbivory levels in plants produce different reactions in visitors ants; and d) different plant structures have different defenses levels. Results presented in Chapter 1 show that foliar herbivore in Q. multiflora was low and similar to different stages of leaf development, showing that expressed plant defenses are effective. Of the three foliar defenses evaluated during leaf development, it was observed that density of trichomes presents effectiveness peak in early development, biotic defense (EFNs productivity) in intermediated period of development and leaf toughness in the period in which the leaf is adult. These results show the efficacy of temporal variation in foliar defenses in Q. multiflora, which directly affects ant-plant interaction. In Chapter 2, it was shown that EFNs located in inflorescences produce nectar more quantitative and qualitative, which attract large amount of ants, than EFNs located in leaves. EFNs productivity and attractiveness, as well as ants foraging, were also influenced by herbivory variation (experimentally simulated). These results show that Q. multiflora synchronizes its leaf defenses over time ensuring protection against herbivores and that these defenses (as evidenced for biotic defense) can be changed according to value and attack probability of their structures.

Page generated in 0.0717 seconds