• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Challenge of Providing Sufficient Grid Capacity for Electrification to Be a Key Factor in Achieving Climate Neutrality Until 2045 : A national and regional demand analysis investigating the future electricity demand and the grid operators' perspectives on large-scale electrification in Sweden

Ackebjer Turesson, Hampus, Werneskog, Jesper January 2020 (has links)
The purpose of the thesis is to contribute to grid planning and public debate about how the electric power system can cope with electrification and decarbonisation. The thesis is based on the assumption that Sweden, in accordance with the climate goals, will achieve climate neutrality by 2045. Based on a literature review, an analysis is made of how different scenarios predict the future national electricity demand up until 2045 and identifies the underlying drivers for changes in electricity demand. A more detailed analysis based on results from a literature review and interviews with industry representatives is made for four chosen regions, Norrbotten, Västra Götaland, Stockholm and Skåne. For each region, estimates are made of how high the electrification potential is in the industrial, transport, residential and service sectors. The prerequisites for the electricity grid to handle the identified electrification potential, in terms of grid capacity, have been analysed in order to highlight what challenges there are for large-scale electrification to be a key factor in achieving the climate goals. The general belief in the studied scenarios is that the national electricity demand will increase until 2045. The investigated scenarios predict increases resulting in an annual national electricity demand of up to 207 TWh in 2045, corresponding to an increase of almost 60 %. The most significant increases are due to decarbonisation in the industry and transport sector. The regional analysis shows significant electrification potentials in the investigated regions. A few industries stand out with dramatic increases, Borealis AB in Västra Götaland shows an electrification potential of 8 TWh and 1 000 MW and SSAB in Norrbotten shows an electrification potential of 9 TWh and 900 MW. Significant electrification potentials in the transport, residential and service sectors have been identified in metropolitan areas, i.e. in the region of Stockholm, Västra Götaland and Skåne. The grid analysis shows that it will be challenging to increase grid capacity at sufficient speed. It is concluded that there is currently insufficient grid capacity to meet large-scale electrification, and that the grids need to be reinforced. However, the concession process for grid reinforcements is considered too slow to meet the demands that arise, primarily in the industry sector. Three ways to address this challenge have been identified: -          If the permission process for electricity grid expansion does not change and the industry is to choose the electrification route, this needs to be decided before 2030 in order for reinforcements in the electricity grid to be ensured before 2045. -          Speed up the permit process to allow shorter lead times for power grid expansions. -          The industry choose another route for decarbonisation than electrification. The overall conclusion is that new approaches for expanding the electricity grid will be required if large-scale electrification is to be a key factor in achieving the climate goals in 2045.
2

Towards a fossil free steel sector : Conditions for technology transfer of hydrogenbased iron and steel in Europe / Mot en fossilfri stålsektor : Förutsättningar för tekniköverföring av vätgasbaserat järn och stål i Europa

Öhman, Amanda January 2019 (has links)
In order to meet the targets of the Paris Agreement, there is a need to significantly reduce emissions from energy-intensive industries, iron and steel included. One promising technology with the potential to reduce the emissions related to iron and steelmaking to basically none is direct reduction with fossil free hydrogen, which requires large amounts of fossil free electricity. This master thesis explores the conditions for this technology in a European context with an energy perspective as the main focus. Three primary steel producing countries in Europe are chosen as focus countries; Germany, France and Italy. The findings of the study conclude that neither of the focus countries is an optimal sociotechnical fit for hydrogen-based direct reduction for iron and steel production at present. France is the country with the best conditions from a solely energy perspective but lacks some important factors for an enabling environment for technology transfer. Germany on the other hand have the most promising characteristics for an enabling environment but still face large challenges when it comes to power sector decarbonisation. In order to overcome the barriers and create an enabling environment it is key that energy and industry transitions are aligned, that a policy framework that supports these transitions is in place and that key actors representing all aspects of the transition cooperate; from industry to research, academia, policymakers and others. The findings also show that the current locations of the primary steel plants are in many cases not where the most favourable conditions for renewable power generation are and given the renewable capacity and transmission limitations of today, merely switching to a hydrogenbased process is not likely viable. A future configuration could be decentralised value chains where the different processes are located where there are optimal conditions e.g. that either hydrogen or sponge iron is produced where there are favourable power conditions and then transported to steel plants for the remaining processes in the value chain. / För att nå målen uppsatta i Parisavtalet behöver energiintensiva industrier kraftigt minska sina utsläpp, däribland järn- och stålindustrin. Direktreduktion med fossilfri vätgas är en teknologi med potential att minska utsläppen från järn och ståltillverkning till praktiskt taget noll men kräver stora mängder fossilfri el. Detta examensarbete undersöker de energimässiga förutsättningarna för denna teknik i en europeisk kontext. Tre länder som producerar primärstål är utvalda som fokusländer i studien; Tyskland, Frankrike och Italien. Resultaten av studien visar att inget av de utvalda länderna i dagsläget har optimala sociotekniska förutsättningar för tekniken. Frankrike är det land med de bästa energimässiga förutsättningarna men saknar några viktiga faktorer för att vara en möjliggörande socioteknisk miljö. Tyskland å andra sidan har de mest lovande förutsättningarna för en lämplig socioteknisk miljö men står inför utmaningar när det kommer till energisystemet och tillgången på fossilfri el. För att skapa förutsättningar för denna teknik är det viktigt med koordinerade omställningar i energisektorn och industrin, policys som möjliggör dessa omställningar samt ett väl fungerande samarbete mellan industrin, akademin, beslutsfattare och andra viktiga aktörer. Studien visar också att de platser där nuvarande stålverk för primärstål finns inte har de bästa förutsättningar för förnybar elproduktion och att en vätgasbaserad process inte är optimal, baserat på den förnybara kapaciteten och de transmissionsbegränsningar som finns idag i elsystemet. Det finns istället möjlighet till decentraliserade värdekedjor, där varje process placeras där de mest lämpliga förhållandena finns. Detta kan exempelvis innebära att vätgas eller järnsvamp produceras där tillgången till fossilfri el är god, för att sedan transporteras till stålverken för de resterande processtegen.

Page generated in 0.1175 seconds