• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pincement spectral en courbure positive

Bertrand, Jerome 19 September 2003 (has links) (PDF)
Sur l'ensemble des variétés riemanniennes compactes à courbure de Ricci positive (on normalise par $Ric \geq (n-1)g$), la première valeur propre non nulle du laplacien agissant sur les fonctions atteint son minimum uniquement pour la sphère canonique. Dans cette thèse, nous caractérisons, à l'aide de la distance de Gromov-Hausdorff, les variétés riemanniennes à courbure positive dont les premières valeurs propres du laplacien sont proches de celles de la sphère canonique. Cette propriété de minimimalité du spectre de la sphère s'étend par un procédé de symétrisation, au spectre de Dirichlet des boules géodésiques de la sphère parmi les domaines de variétés à courbure de Ricci positive. Nous étudions les domaines de variétés à courbure de Ricci positive dont la première valeur propre de Dirichlet est presque minimimale. En particulier, nous montrons qu'un domaine convexe dont la première valeur propre de Dirichlet est proche de celle d'un hémisphèere est Gromov-Hausdorff proche d'un hémisphère d'un sinus produit tordu.

Page generated in 0.0502 seconds