91 |
Quantum Optoelectronics: Nanoscale Transport in a New LightGonzalez, Jose Ignacio 11 April 2006 (has links)
Common to molecular electronics studies, nanoscale break junctions created through electromigration also naturally produce electroluminescent arrays of individual gold nanoclusters spanning the electrodes. Due to inelastic electron tunneling into cluster electronic energy levels, these several-atom nanoclusters (Au~18-22) exhibit bright, field-dependent, antibunched emission in the near infrared (650800 nm), acting as room-temperature electrically driven single-photon sources. AC electrical excitation with time-stamping of photon arrival times enables fast and local tracking of electrode-nanocluster coupling dynamics demonstrating that charge injection to the clusters is directly modulated by dynamic coupling to individual electrodes. The electrode-nanocluster coupling rate fluctuates by nearly an order of magnitude and, due to the asymmetry of the electromigration process, exhibits preferential charge injection from the anode. Directly reporting on (and often facilitating) nanoscale charge transport, time-tagged single-molecule electroluminescence reveals a significant mechanism for nanoscale charge transport in nanoscale gold break junctions, and offers direct readout of the electrode-molecule interactions that can be correlated with current flow. Single-molecule electroluminescence techniques for characterization of electrode heterogeneity and dynamics as well as implications for future research are discussed.
|
92 |
Determination of state-to-state inelastic differential cross sections from three-dimensional sliced fluorescence imagesWang, Feng-chu 08 August 2011 (has links)
A numerical analysis scheme has been developed to extract dynamic information from experimental images by the three-dimensional sliced fluorescence imaging method. The present scheme is based on a generalized framework in analyzing fluorescence images from the photo-initiated dynamic process. Specifically, image quality optimization, noise reduction and numerical fitting codes have been implemented in the present scheme to determine differential cross sections of the state-to-state inelastic collisions between CN(A 2£S) and He. These codes are indispensable in extracting state-to-state dynamic information from experimental images in any photo-initiated collision experiment, no matter it is executed in the beam or bulb environment.
|
93 |
Development Of A Physical Theory Model For The Simulation Of Hysteretic Behavior Of Steel BracesCalik, Ertugrul Emre 01 April 2007 (has links) (PDF)
Bracing members are considered to be effective earthquake-resistant elements as they improve the lateral strength and stiffness of the structural system and contribute to seismic energy dissipation by deforming inelastically during severe earthquake motions. However, the cyclic behavior of such bracing members is quite complex because it is influenced by both buckling and yielding.
This thesis presents simple but an efficient analytical model that can be used to simulate the inelastic cyclic behavior of steel braces. This model achieves realism and efficiency by combining analytical formulations with some semi-empirical formulas developed on the basis of a study of experimental data. A brace is idealized as a pin-pin ended member with a plastic hinge located at mid-length of a brace Input parameters of the model are based on only material properties such as steel yield strength and modulus of elasticity as well as geometric properties including cross-sectional area, moment of inertia, etc. The obtained results are verified by the experimental and available analytical results.
|
94 |
Effect Of Inelastic Behaviour Of Load Bearing Walls On The FrameGuler, Gokay 01 June 2009 (has links) (PDF)
The purpose of this study is to investigate the influence of material and geometric nonlinearities occurring in beams, columns and walls of RC frame-wall structural systems when undergoing severe ground excitations. For this purpose, a low-rise RC building is considered with and without walls, and the joining beams and columns are designed with the strong-column weak-beam concept. The dimensions, material properties and the reinforcement amounts are calculated in accordance with the values suggested in design codes. Each structure is analyzed for various levels of applied vertical force and change in wall stiffness / where the effect of geometric nonlinearity is considered for each case. Force formulation frame elements with spreading inelasticity over the span are used for the modelling of each beam, column and wall. The coupling of the section forces is obtained by the fibre discretization of the section into several material points. Each section is divided into confined and unconfined regions and appropriate material properties are used for concrete and steel for cyclic loading. Both static pushover and dynamic analyses are performed in order to replicate the worst case scenario for a possible earthquake. From this study, it is concluded that the beams and columns of a frame-wall structural system should be designed carefully for load redistributions resulting from the yielding of the wall in the case of a strong earthquake, thus the design codes should address this situation for both in the retrofit of existing frame buildings with walls and in the construction of new frame-wall type buildings.
|
95 |
Elastic and Inelastic Electron Tunneling in Molecular DevicesKula, Mathias January 2006 (has links)
<p>A theoretical framework for calculating electron transport through molecular junctions is presented. It is based on scattering theory using a Green's function formalism. The model can take both elastic and inelastic scattering into account and treats chemical and physical bonds on equal footing. It is shown that it is quite reliable with respect to the choice of functional and basis set. Applications concerning both elastic and inelastic transport are presented, though the emphasis is on the inelastic transport properties. The elastic scattering application part is divided in two part. The first part demonstrates how the current magnitude is strongly related to the junction width, which provides an explanation why experimentalists get two orders of magnitude differences when performing measurements on the same type of system. The second part is devoted to a study of how hydrogenbonding affects the current-voltage (I-V) characteristics. It is shown that for a conjugated molecule with functional groups, the effects can be quite dramatic. This shows the importance of taking possible intermolecular interactions into account when evaluating and comparing experimental data. The inelastic scattering part is devoted to get accurate predictions of inelastic electron tunneling spectroscopy (IETS) experiments. The emphasis has been on elucidating the importance of various bonding conditions for the IETS. It is shown that the IETS is very sensitive to the shape of the electrodes and it can also be used to discriminate between different intramolecular conformations. Temperature dependence is nicely reproduced. The junction width is shown to be of importance and comparisons between experiment as well as other theoretical predictions are made.</p>
|
96 |
Inelastic Collisions of Atomic Antimony, Aluminum, Erbium and Thulium below 1 KConnolly, Colin Bryant 15 November 2012 (has links)
Inelastic collision processes driven by anistropic interactions are investigated below 1 K. Three distinct experiments are presented. First, for the atomic species antimony (Sb), rapid relaxation is observed in collisions with \(^4He\). We identify the relatively large spin-orbit coupling as the primary mechanism which distorts the electrostatic potential to introduce significant anisotropy to the ground \(^4S_{3/2}\) state. The collisions are too rapid for the experiment to fix a specific value, but an upper bound is determined, with the elastic-to-inelastic collision ratio \(\gamma \leq 9.1 x 10^2\). In the second experiment, inelastic \(\mathcal{m}_J\)-changing and \(J\)-changing transition rates of aluminum (Al) are measured for collisions with \(^3He\). The experiment employs a clean method using a single pump/probe laser to measure the steady-state magnetic sublevel population resulting from the competition of optical pumping and inelastic collisions. The collision ratio \(\gamma\) is measured for both \(\mathcal{m}_J\)- and \(J\)-changing processes as a function of magnetic field and found to be in agreement with the theoretically calculated dependence, giving support to the theory of suppressed Zeeman relaxation in spherical \(^2P_{1/2}\) states [1]. In the third experiment, very rapid atom-atom relaxation is observed for the trapped lanthanide rare-earth atoms erbium (Er) and thulium (Tm). Both are nominally nonspherical \((L \neq 0)\) atoms that were previously observed to have strongly suppressed electronic interaction anisotropy in collisions with helium \((\gamma > 10^4-10^5, [2,3])\). No suppression is observed in collisions between these atoms \((\gamma \lesssim 10)\), which likely implies that evaporative cooling them in a magnetic trap will be impossible. Taken together, these studies reveal more of the role of electrostatic anisotropy in cold atomic collisions. / Physics
|
97 |
Composite RCS frame systems: construction and peformanceSteele, John Phillip 30 September 2004 (has links)
The objective of this research program is to further evaluate the performance and constructability of reinforced concrete (RC) column-steel beam-slab systems (RCS) for use in low- to mid-rise space frame buildings located in regions of high wind loads and/or moderate seismicity. To better understand these systems, two full scale RCS cruciform specimens were tested under bidirectional quasi-static reversed cyclic loading. The experimental portion of this research program included the construction and testing of two full-scale cruciform specimens with identical overall dimensions but with different joint detailing. The two joint details evaluated were joint cover plates and face bearing plates with localized transverse ties. The construction process was recorded in detail and related to actual field construction practices. The specimens were tested experimentally in quasi-static reversed cyclic loading in both orthogonal loading directions while a constant axial force was applied to the column, to simulate the wind loads in a subassembly of a prototype building. To compliment the experimental work, nonlinear analyses were performed to evaluate the specimen strength and hysteretic degradation parameters for RCS systems. In addition, current recommendations in the literature on the design of RCS joints were used to estimate specimen joint strength and were compared with the experimental findings.
|
98 |
INELASTIC NEUTRON SCATTERING STUDY OF HOST AND GUEST MOLECULAR MOTIONS IN METHANE HYDRATEKamiyama, T., Seki, N., Iwasa, H., Uchida, T., Kiyanagi, Y., Ebinuma, Takao, Narita, Hideo, Igawa, N., Ishii, Y., Bennington, S.M. 07 1900 (has links)
Methane hydrate has a unique structure that the host water framework forms two kinds of cages,
which contain one methane molecule each. Therefore, it has been expected that there may exist
three kinds of translational modes of a methane molecule and also the distortion of translational
mode of host water molecules compared with normal ice. We need information of the host and
guest molecular dynamics over the wide momentum and energy transfer region for studying such
dynamics. In this study inelastic neutron measurements were carried under 40 K with MARI
spectrometer at ISIS in UK, TAS at JRR-3 and CAT at KENS in Japan. For the methane
molecular motion we could confirm its freelike rotation by complementary use of MARI and
TAS spectra. After the subtraction of the scattering intensity of the rotation evaluated by the free
rotation model from the experimental data, three kinds of translation modes were identified at
first experimentally. On the experimental spectra there still remains the excess intensity which
could not explain the single mode excitation. The libration mode of the water framework shows
the different momentum and energy transfer dependence with those of normal ice. The feature of
the libration mode is resemble to ice-IX, that could be considered as a proton ordering of the cage
structure appeared in ice-II, VIII and IX.
|
99 |
INELASTIC COLLISIONS IN COLD DIPOLAR GASESNewell, Catherine A. 01 January 2010 (has links)
Inelastic collisions between dipolar molecules, assumed to be trapped in a static electric field at cold (> 10−3K) temperatures, are investigated and compared with elastic collisions. For molecules with a Λ-doublet energy-level structure, a dipole moment arises because of the existence of two nearly degenerate states of opposite parity, and the collision of two such dipoles can be solved entirely analytically in the energy range of interest. Cross sections and rate constants are found to satisfy simple, universal formulas. In contrast, for molecules in a Σ electronic ground state, the static electric field induces a dipole moment in one of three rotational sublevels. Collisions between two rotor dipoles are calculated numerically; the results scale simply with molecule mass, rotational constant, dipole moment, and field strength.
It might be expected that any particles interacting only under the influence of the dipole-dipole interaction would show similar behavior; however, the most important and general result of this research is that at cold temperatures inelastic rate constants and cross sections for dipoles depend strongly upon the internal structure of the molecules. The most prominent difference between the Λ-doublet and rotor molecules is variation of the inelastic cross section with applied field strength. For Λ-doublet dipoles, cross sections decrease with increasing field strength. For rotor dipoles, cross sections increase proportionally with the square of field strength. Furthermore, the rate constants of the two types of molecules depend very differently on the angular orientations of the dipoles in the electric field.
|
100 |
Nuclear Structure in Transitional Regions: Studies of ¹³²,¹³⁴Xe and Lifetimes in the Stable Zr Nuclei with the (n,n′γ) ReactionPeters, Erin Elizabeth 01 January 2014 (has links)
Nuclei at closed shells tend to be spherical and are well-described by the shell model, while those between closed shells are deformed and better described by collective models. The nuclei which are in transitional regions between spherical and deformed may be studied to gain insight into the nature of this transition. The stable isotopes of zirconium and xenon span such transitional regions and are the subject of this dissertation. Gamma-ray spectroscopy following inelastic neutron scattering has been performed on the stable isotopes of Zr as well as 132,134Xe at the University of Kentucky Accelerator Laboratory. Level lifetimes have been measured using the Doppler-shift attenuation method, which allow the determination of transition probabilities that are of utmost importance in elucidating the structure of these nuclei. The lifetime measurements were the focus of the study of the Zr isotopes. Previously measured level lifetimes in 94Zr by our group were called into question by recent electron scattering experiments. This motivated a re-measurement of these lifetimes and led to a study of the role of the chemical properties of the scattering samples employed in the measurements. Various Zr-containing compounds were characterized with powder X-ray diffraction and scanning electron microscopy and were employed as scattering samples. These studies revealed the impact of using amorphous materials and those composed of small particles as scattering samples on the resulting lifetimes, and has important implications for future lifetime measurements employing the Doppler-shift attenuation method. For the xenon experiments, highly enriched (>99.9%) 132Xe and 134Xe gases were converted to solid 132XeF2 and 134XeF2, and were used as scattering samples. The xenon isotopes have not been particularly well-studied as elemental targets are gases under ambient conditions, which introduces difficulties into the measurements. Much new information was obtained for these nuclei, including the placement of many new transitions and levels, and measurement of many new level lifetimes, allowing the determination of reduced transition probabilities. This additional information provided important insight into the structure of these two transitional nuclei.
|
Page generated in 0.0391 seconds