1 |
Breaking Language Barriers: Enhancing Multilingual Representation for Sentence Alignment and Translation / 言語の壁を超える:文のアラインメントと翻訳のための多言語表現の改善Mao, Zhuoyuan 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第25420号 / 情博第858号 / 新制||情||144(附属図書館) / 京都大学大学院情報学研究科知能情報学専攻 / (主査)特定教授 黒橋 禎夫, 教授 河原 達也, 教授 鹿島 久嗣 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
2 |
Anchor-free object detection in surveillance applicationsMagnusson, Peter January 2023 (has links)
Computer vision object detection is the task of detecting and identifying objects present in an image or a video sequence. Models based on artificial convolutional neural networks are commonly used as detector models. Object detection precision and inference efficiency are crucial for surveillance-based applications. A decrease in the detector model complexity as well as in the complexity of the post-processing computations promotes increased inference efficiency. Modern object detectors for surveillance applications usually make use of a regression algorithm and bounding box priors referred to as anchor boxes to compute bounding box proposals, and the proposal selection algorithm contributes to the computational cost at inference. In this study, an anchor-free and low complexity deep learning detector model was implemented within a surveillance applications setting, and was evaluated and compared to a reference baseline state-of-the-art anchor-based object detector. A key-point-based detector model (CenterNet), predicting Gaussian distribution based object centers, was selected for the evaluation against the baseline. The surveillance applications adapted anchor-free detector exhibited a factor 2.4 lower complexity than the baseline detector. Further, a significant redistribution to shorter post-processing times was demonstrated at inference for the anchor-free surveillance adapted CenterNet detector, giving a modal values factor 0.6 of the baseline detector post-processing time. Furthermore, the surveillance adapted CenterNet model was shown to outperform the baseline in terms of detection precision for several surveillance applications relevant classes and for objects of smaller spatial scale.
|
Page generated in 0.0887 seconds