1 |
The Main Diagonal of a Permutation MatrixLindner, Marko, Strang, Gilbert 11 July 2012 (has links) (PDF)
By counting 1's in the "right half" of 2w consecutive rows, we locate the main diagonal of any doubly infinite permutation matrix with bandwidth w. Then the matrix can be correctly centered and factored into block-diagonal permutation matrices.
Part II of the paper discusses the same questions for the much larger class of band-dominated matrices. The main diagonal is determined by the Fredholm index of a singly infinite submatrix. Thus the main diagonal is determined "at infinity" in general, but from only 2w rows for banded permutations.
|
2 |
The Main Diagonal of a Permutation MatrixLindner, Marko, Strang, Gilbert January 2011 (has links)
By counting 1's in the "right half" of 2w consecutive rows, we locate the main diagonal of any doubly infinite permutation matrix with bandwidth w. Then the matrix can be correctly centered and factored into block-diagonal permutation matrices.
Part II of the paper discusses the same questions for the much larger class of band-dominated matrices. The main diagonal is determined by the Fredholm index of a singly infinite submatrix. Thus the main diagonal is determined "at infinity" in general, but from only 2w rows for banded permutations.
|
Page generated in 0.0607 seconds