• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1776
  • 1580
  • 753
  • 159
  • 117
  • 92
  • 48
  • 32
  • 26
  • 21
  • 20
  • 15
  • 12
  • 6
  • 5
  • Tagged with
  • 5337
  • 1603
  • 446
  • 445
  • 408
  • 377
  • 372
  • 361
  • 333
  • 303
  • 297
  • 297
  • 292
  • 270
  • 265
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Cholinergic Signaling Regulates Macrophage Migration During Acute and Chronic Inflammation via Α7 Nicotinic Acetylcholine Receptor

Keever, Kasey, Cui, Kui, Ceausu, Nicole, Addorisio, Meghan, Williams, David L, Pavlov, Valentin A, Yakubenko, Valentin 06 April 2022 (has links)
The a7 nicotinic acetylcholine receptor (a7nAChR) expressed on macrophages, a critical link between the neural and immune systems, provides a defense mechanism during inflammatory diseases. Release of acetylcholine in target tissues activates a7nAChR, a necessary element of the cholinergic anti-inflammatory pathway, inhibiting pro-inflammatory signaling pathways via NF-kB. However, other potential aspects of a7nAChR function are not well understood. The purpose of our project is to evaluate the role of a7nAChR activation in macrophage migration and accumulation at the site of inflammation. We first evaluated the survival of WT and a7nAChR-/- mice during LPS-induced endotoxemia. We found that a7nAChR-/- mice have significantly decreased survival compared to WT. We next examined differences in monocyte migration by tracking adoptively transferred, fluorescently labeled a7nAChR-/- and WT monocytes in the model of LPS-induced endotoxemia using flow cytometry and imaging flow cytometry. We found that a7nAChR-/- monocytes have significantly reduced migration to the lung, liver, and spleen during endotoxemia, in both a7nAChR-/- and WT recipient mice. Based on this result, we investigated if adoptive transfer of WT or a7nAChR-/- monocytes would decrease or improve survival in LPS-induced endotoxemia. Adoptively transferred, unlabeled WT monocytes improved survival in a7nAChR-/- recipient mice, though this effect did not reach significance. Survival was unaffected by adoptive transfer of a7nAChR-/- monocytes. Notably, this data coincides with the protective role of both macrophages and a7nAChR during sepsis that has been demonstrated in multiple recent publications. To reveal a potential mechanism, we tested the effect of a7nAChR-deficiency on the expression of adhesive and chemokine receptors at the macrophage surface. We selected 10 receptors to evaluate via qRT-PCR and flow cytometry. Our qRT-PCR experiments demonstrated a significantly reduced expression in CCR5, CCR2, integrin αMß2, and integrin αXß2 in a7nAChR-/- peritoneal macrophages, when compared to WT. The reduction in expression of CCR2 and αXß2 was corroborated by our flow cytometry results. Interestingly, the decrease in CCR5 and αMß2 was lower, but still detectable, and this discrepancy can be attributed to post transcriptional regulation of these receptors. The role of these receptors was further investigated in an in vitro 3D migration assay. Macrophages deficient in a7nAChR showed significantly decreased migration within a fibrin matrix (integrin αMß2 dependent) along a RANTES gradient (CCR5-mediated). The reduction in the migration of a7nAChR-/- macrophages toward MCP-1 (CCR2-mediated) did not reach significance, although still measurable. This experiment confirmed the chemokine-independent contribution of αMß2 to mesenchymal macrophage migration. These protective effects of αMß2 and CCR5 during sepsis were reported previously and are related to the regulation of monocyte recruitment and efflux at the site of inflammation. In summary, we discovered a new link between the parasympathetic nervous system and immune response based on a7nAChR-regulated macrophage migration during inflammation. The signaling pathway downstream of a7nAChR that modulates αMß2 and CCR5 expression is yet to be identified and is the objective of our ongoing investigation
322

Cholinergic Signaling Regulates Macrophage Migration During Acute and Chronic Inflammation via Α7 Nicotinic Acetylcholine Receptor

Keever, Kasey, Cui, Kui, Ceausu, Nicole, Addorisio, Meghan, Williams, David L, Pavlov, Valentin A., Yakubenko, Valentin 06 April 2022 (has links)
The a7 nicotinic acetylcholine receptor (a7nAChR) expressed on macrophages, a critical link between the neural and immune systems, provides a defense mechanism during inflammatory diseases. Release of acetylcholine in target tissues activates a7nAChR, a necessary element of the cholinergic anti-inflammatory pathway, inhibiting pro-inflammatory signaling pathways via NF-kB. However, other potential aspects of a7nAChR function are not well understood. The purpose of our project is to evaluate the role of a7nAChR activation in macrophage migration and accumulation at the site of inflammation. We first evaluated the survival of WT and a7nAChR-/- mice during LPS-induced endotoxemia. We found that a7nAChR-/- mice have significantly decreased survival compared to WT. We next examined differences in monocyte migration by tracking adoptively transferred, fluorescently labeled a7nAChR-/- and WT monocytes in the model of LPS-induced endotoxemia using flow cytometry and imaging flow cytometry. We found that a7nAChR-/- monocytes have significantly reduced migration to the lung, liver, and spleen during endotoxemia, in both a7nAChR-/- and WT recipient mice. Based on this result, we investigated if adoptive transfer of WT or a7nAChR-/- monocytes would decrease or improve survival in LPS-induced endotoxemia. Adoptively transferred, unlabeled WT monocytes improved survival in a7nAChR-/- recipient mice, though this effect did not reach significance. Survival was unaffected by adoptive transfer of a7nAChR-/- monocytes. Notably, this data coincides with the protective role of both macrophages and a7nAChR during sepsis that has been demonstrated in multiple recent publications. To reveal a potential mechanism, we tested the effect of a7nAChR-deficiency on the expression of adhesive and chemokine receptors at the macrophage surface. We selected 10 receptors to evaluate via qRT-PCR and flow cytometry. Our qRT-PCR experiments demonstrated a significantly reduced expression in CCR5, CCR2, integrin αMß2, and integrin αXß2 in a7nAChR-/- peritoneal macrophages, when compared to WT. The reduction in expression of CCR2 and αXß2 was corroborated by our flow cytometry results. Interestingly, the decrease in CCR5 and αMß2 was lower, but still detectable, and this discrepancy can be attributed to post transcriptional regulation of these receptors. The role of these receptors was further investigated in an in vitro 3D migration assay. Macrophages deficient in a7nAChR showed significantly decreased migration within a fibrin matrix (integrin αMß2 dependent) along a RANTES gradient (CCR5-mediated). The reduction in the migration of a7nAChR-/- macrophages toward MCP-1 (CCR2-mediated) did not reach significance, although still measurable. This experiment confirmed the chemokine-independent contribution of αMß2 to mesenchymal macrophage migration. These protective effects of αMß2 and CCR5 during sepsis were reported previously and are related to the regulation of monocyte recruitment and efflux at the site of inflammation. In summary, we discovered a new link between the parasympathetic nervous system and immune response based on a7nAChR-regulated macrophage migration during inflammation. The signaling pathway downstream of a7nAChR that modulates αMß2 and CCR5 expression is yet to be identified and is the objective of our ongoing investigation.
323

Painful stiff shoulder (frozen shoulder) and soft tissue rheumatism in the upper limb

Binder, Allan Ivan 24 April 2017 (has links)
No description available.
324

Characterizing the Role of α-Synuclein in Innate Defenses

Rousso, Christopher 03 January 2020 (has links)
Typical Parkinson’s disease (PD) is thought to be caused by a combination of genetic and environmental factors. α-Synuclein (SNCA) is central to PD pathogenesis; however, functions of SNCA outside the brain remain largely unknown. We, and others, have found that wild-type Snca expression confers anti-microbial effects in mice by reducing the severity of viral infections. Our aim is to further characterize a role of SNCA in systemic and brain health of the host during infection. We hypothesize that SNCA plays a role in innate defenses and that SNCA gene dosage will modulate outcomes of infection in the brain following pathogen exposure. Intranasal delivery of reovirus in mouse pups causes systemic illness, leading to encephalitis. In this study, intracranial inoculations of reovirus are used to differentiate the relative contribution of Snca-mediated protection in the brain versus the periphery. Two outcomes are monitored: survival and viral titres in select organs. When comparing wild-type Snca, heterozygous, and knock-out mice, I found that Snca expression did not confer any protection with respect to survival or regarding viral brain titres. These results are paralleled by cellular overexpression models. Unexpectedly, the anti-viral property of Snca, which was previously observed systemically with three distinct dsRNA viruses, did not extend to a paradigm where neural cells were directly exposed to reovirus. These results suggest a complex, anti-viral role for Snca in host defenses that may be mediated, in part, outside the central nervous system. Future studies will address whether this occurs in peripheral neurons or cells of hematopoietic lineages.
325

The roles of prostate progenitor cells and survivin in inflammation-induced prostate epithelial hyperplasia

Wang, Liang 06 September 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Prostate inflammation is a common health concern as an important risk factor for prostate cancer and Benign Prostatic Hyperplasia (BPH). Inflammation induces epithelial apoptosis and epithelial hyperplasia, suggesting that inflammation promotes the tissue repair and regeneration process. Progenitor cells are critical in maintaining epithelial homeostasis in adult tissues. However, the roles of prostate progenitor cells, especially during prostate inflammation, are understudied. I proposed that prostate epithelial progenitor cells (PEPCs) are involved in inflammation-induced epithelial hyperplasia, and are driven by regulation from inflammatory pathways. Here, we showed that sphere formation ability of prostate epithelial cells is increased by inflammation. We identified that a population of prostate progenitor cells, named prostate epithelial progenitor cells, were expanded by inflammation under the regulation of IL-1/insulin-like growth factor 1 (IGF-1) signaling pathway, a previously identified critical regulation pathway of inflammation-induced epithelial hyperplasia. The expansion of PEPCs also correlated with the intensity of inflammation. We then identified that survivin was upregulated in prostate epithelial cells by inflammation and was mainly co-localized with proliferation markers in prostate epithelial cells. This upregulation depended on IL-1/IGF-1 signaling. In vivo treatment with the survivin inhibitor LQZ-7F reduced both survivin expression and proliferation in prostate epithelial cells during inflammation. Using our label retaining strategy, we compared the survivin expression pattern in two prostate regeneration models. We discovered that different populations of progenitor cells may be involved in different regeneration processes. We identified that survivin was expressed in a specific population of reactivated cells that respond to the inflammatory environment and was independent of the known slow-cycling stem cells found in the prostate epithelium. In summary, I have identified that PEPCs are involved in epithelial hyperplasia and are dependent on survivin signaling. My work defines how survivin serves as a key regulator of epithelial hyperplasia in an inflammatory environment.
326

Anticoagulant Activity of Inhaled Heparin in the Dog

Manion, Jill S 17 August 2013 (has links)
Respiratory disease represents an important component of small animal emergency medicine. The morbidity and mortality of respiratory disease and inflammation, although poorly defined, is considered to be significant. Much of the therapy used in the stabilization and management of respiratory disease in veterinary patients has been taken from human medicine, including inhalation therapy. Heparin has been shown to have substantial anticoagulant, anti-inflammatory, and antiibrotic effects within the lungs when administered via inhalation in human patients. To date, no studies have evaluated the use of nebulized heparin in dogs. This study is the first to attempt to generate pharmacokinetic data regarding nebulized unfractionated heparin in the dog.
327

Peripheral Leukocytes and Intracerebral Hemorrhage

Adeoye, Opeolu, M.D. January 2012 (has links)
No description available.
328

Investigating Mitochondrial Choline Metabolism in Macrophages

Pember, Ciara 18 January 2023 (has links)
The essential nutrient choline is known to serve as a precursor for phospholipids and the neurotransmitter acetylcholine, and to feed into methylation pathways. The role and fate of choline in immune cells, however, is not yet fully elucidated. To act as a methyl group donor, choline must first undergo oxidation in mitochondria, a process which has long been thought to occur exclusively in the liver and kidney. The recent identification of choline transporters on the mitochondrial membrane has highlighted the possibility of mitochondrial choline oxidation in other cell types. Here, I show that choline transporters are present on the mitochondrial membrane of primary and immortalized mouse macrophages. The interaction of CTL2 with mitochondria is further augmented following pro-inflammatory polarization with the bacterial endotoxin lipopolysaccharide. I show that mitochondrial choline uptake occurs in macrophages using radiolabelled choline assays; however, it remains unclear whether this process is conducted through the identified transporters. Preliminary data suggest that mitochondrial choline oxidation to betaine was increased in LPS-stimulated macrophages, revealing a potential additional input into one-carbon metabolism in polarized macrophages. This project broadens the existing paradigm that choline oxidation occurs strictly in hepatic and renal tissue and suggests that choline oxidation may be a regulated process in macrophage polarization.
329

The role of L-selectin in the rapid initial sequestration of neutrophils in the pulmonary microvasculature and neutrophil emigration in response to inflammatory stimuli

Doyle, Nicholas A. January 1996 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).
330

Dysregulation of Noncanonical NF-κB Signaling in Gastrointestinal Diseases

Morrison, Holly Ann 01 September 2023 (has links)
Regulation of host health is intricately coordinated by a diverse interplay of immune cells detecting assaults from pathogens via recognition of pathogen associated molecular patterns (PAMPs) to mount an immune response, as well as detecting damage associated molecular patterns (DAMP) to indicate an area of damage and signal tissue repair. The gastrointestinal tract is a major signaling hub for such immune responses, as intestinal epithelial cells (IECs) compose the epithelial barrier, immune cells surveillance breached barriers to regulate the gut microbiome, and intestinal stem cells (ISCs) proliferate to replenish the IEC pool. One such method for regulating these cellular functions downstream of PAMPs/DAMPs within the gastrointestinal tract is via NF-κB signaling. This cellular signaling pathway is activated by one of two pathways: the well- defined canonical NF-κB pathway and the understudied noncanonical NF-κB pathway. The noncanonical NF-κB pathway is unique as it requires NIK, the NF-κB-inducing Kinase, to further elicit signal transduction of this pathway. Noncanonical NF-κB activation is critical to maintaining gut health, as signaling is regulated at a precise level to ensure a balance of pro-/anti-inflammatory signals to elicit a proper damage response. Any perturbations to NIK-activated signaling significantly predisposes the gastrointestinal niche towards chronic inflammatory conditions of the gastrointestinal tract. In this work, we explore the potential involvement of dysregulated noncanonical NF-κB signaling in inducing chronic inflammatory diseases of the gut, including Eosinophilic Esophagitis (upper GI tract), Celiac Disease/Non-Celiac Gluten Sensitivities (small intestine), Inflammatory Bowel Disease (entire intestine/large intestine), and an inflammatory subtype of colorectal cancer being Colitis-Associated Colorectal Cancer (large intestine). We study this pathway via the use of murine models bearing genetic deletions, cellular models, and the generation of miniature organs (i.e. "organoids") in petri dishes. Further, we assess varying levels of NF-κB signaling through the genetic deletions of NIK and RelA to inhibit noncanonical and canonical NF-κB pathways, respectively. Reciprocally, we also examine overactivated signaling via loss of the negative regulatory NLRs, which are proteins that function to impede NF-κB signaling. Clinical relevancy of this work is evaluated using biopsy samples collected from human patients with active disease states. Culminating our work, we find that noncanonical NF-κB signaling levels is both tissue- and cell-type specific in driving disease formation. Finally, we conclude our findings by suggesting the promise of NIK as a potential candidate for disease biomarkers and a target for future drug development. / Doctor of Philosophy / Redness, swelling, heat, pain, and loss of function – these are the five signs of inflammation. Under normal physiological conditions, inflammation is the body's conserved evolutionary response by serving as the first line of defense against infections propagated by foreign invaders like pathogens (i.e. bacteria, viruses, fungi), while also signaling to the immune system to resolve tissue damage. Therefore, properly maintained pro-inflammatory signaling is critical to ensuring a healthy state. However, an imbalance in pro- and anti-inflammatory signaling elicits a long-term, low-grade form of inflammation termed "chronic inflammation". Unresolved chronic inflammation can persist for several months or even years and further predisposes patients to various chronic inflammatory conditions and even inflammation-induced cancer. The NF-κB cellular signaling mechanism is a central regulator of inflammation and can be activated upon either the canonical NF-κB or noncanonical NF-κB pathways. In comparison to its canonical counterpart, the noncanonical NF-κB is vastly understudied, especially in regards to gastrointestinal health. A unique feature of the noncanonical NF-κB pathway is the required stabilization of the NF-κB-inducing Kinase (NIK) protein, which is required for further propagation of this signaling network. As evidenced by our culmination of works, we reveal that Noncanonical NF-κB signaling is critical to gut health, as it maintains a precise cellular signaling mechanism within the gut tract by properly maintaining pro- and anti-inflammatory signaling. Additional, downstream implications include regulation of cell division and activation of cell death to elicit a proper damage response. Within this dissertation, we evaluate the understudied noncanonical NF-κB pathway in various chronic inflammatory diseases of the gut including Eosinophilic Esophagitis (upper GI tract), Celiac Disease/Non-Celiac Gluten Sensitivities (small intestine), Inflammatory Bowel Disease (entire intestine/large intestine), and an inflammatory subtype of colorectal cancer Colitis-Associated Colorectal Cancer (large intestine). Through the use of murine models bearing deletions of genes related to noncanonical NF-κB signaling (esp. NIK), cell models, and the generation of "mini-organs" organoids from isolated intestinal stem cells, we are able to model the involvement of NIK and noncanonical NF-κB signaling in maintaining gastrointestinal health. Clinical relevancy of these findings was further evaluated by quantifying noncanonical NF-κB signaling levels in human biopsies. Culminating our work, we find noncanonical NF-κB signaling to be context-specific in driving disease formation. Finally, we conclude this work by suggesting the promise of NIK as a potential candidate for disease biomarkers and target for future drug development.

Page generated in 0.0724 seconds