1 |
Neural networks predict well inflow performanceAlrumah, Muhammad K. 30 September 2004 (has links)
Predicting well inflow performance relationship accurately is very important for production engineers. From these predictions, future plans for handling and improving well performance can be established. One method of predicting well inflow performance is to use artificial neural networks.
Vogel's reference curve, which is produced from a series of simulation runs for a reservoir model proposed by Weller, is typically used to predict inflow performance relationship for solution-gas-drive reservoirs. In this study, I reproduced Vogel's work, but instead of producing one curve by conventional regression, I built three neural network models. Two models predict the IPR efficiently with higher overall accuracy than Vogel's reference curve.
|
2 |
Inflow Performance Relationships (IPR) for Solution Gas Drive Reservoirs -- a Semi-Analytical ApproachNass, Maria A. 2010 May 1900 (has links)
This work provides a semi-analytical development of the pressure-mobility behavior of solution gas-drive reservoir systems producing below the bubble point pressure. Our primary result is the "characteristic" relation which relates normalized (or dimensionless) pressure and mobility functions. This formulation is proven with an exhaustive numerical simulation study consisting of over 900 different cases. We considered 9 different pressure-volume-temperature (PVT) sets, and 13 different relative permeability cases in the simulation study. We also utilized 7 different depletion scenarios.
The secondary purpose of this work was to develop a correlation of the "characteristic parameter" as a function of rock and fluid properties evaluated at initial reservoir conditions such as: API density, GOR, formation volume factor, viscosity, reservoir pressure, reservoir temperature, oil saturation, relative permeability end points, corey exponents and oil mobility:
We did successfully correlate the characteristic parameter as a function of these variables, which proves that we can uniquely represent the pressure-mobility path during depletion with specific reservoir and fluid property variables, taken as constant values for a particular case.
The functional form of our correlation along with all relevant equations are shown on the body of this document.
|
3 |
[en] TOTAL ANALYSIS METHODOLOGY FOR THE DEVELOPMENT OF A NATURAL GAS FIELD / [pt] METODOLOGIA DE ANÁLISE GLOBAL PARA O DESENVOLVIMENTO DE UM CAMPO DE GÁS NATURALOSCAR HERNAN JALIL GUITERAS 22 October 2003 (has links)
[pt] Para que ocorra o fluxo de fluidos em um sistema de
produção é necessário que a energia dos fluidos no
reservatório seja capaz de superar as perdas de carga nos
diversos componentes do sistema. Os fluidos têm que escoar
do reservatório aos separadores na superfície, passando
pelas tubulações de produção dos poços, pelos equipamentos
de cabeça de poço e pelas linhas de surgência. O projeto de
um sistema de produção não deve ser executado considerando
independentemente o desempenho do reservatório e o cálculo
do fluxo nas tubulações de produção e nas linhas e
equipamentos de superfície. A avaliação do desempenho de um
sistema de produção de gás requer a aplicação de um
método de análise total que considere simultaneamente o
escoamento nos diversos segmentos do sistema. A análise
total de um sistema de produção, pode ser efetuada por
um método gráfico - analítico a ser empregado no desenho de
completação de poços de gás e petróleo com ou sem
levantamento artificial. Em termos de conceito de análise
total, um sistema de produção é constituído basicamente
pelos elementos: reservatório, tubo de produção vertical,
linhas de fluxo horizontal e separador, incluindo válvulas
de fundo de poço e choke superficiais, onde ocorrem uma
certa perda de pressão relacionada com a vazão. O
comportamento de fluxo de cada elemento do sistema total
de produção é representado por uma equação que relaciona a
pressão num nó selecionado e a vazão de produção. O cálculo
seqüencial das pressões nos diferentes nós dos diversos
elementos do sistema permite que a vazão de produção do
poço seja determinada. Para calcular a relação da vazão com
as mudanças de pressão que ocorrem durante o transporte do
fluido à superfície e conseqüente variação das propriedades
físicas do fluido, efetuou-se uma revisão dos conceitos de
engenharia de reservatório, correlações de fluxo em
tubulações verticais, horizontais e restrições. Finalmente,
realizou-se uma análise de sensibilidade da metodologia ao
emprego das diferentes relações de performance de fluxo e
dos métodos de cálculo de fluxo em poços e linhas. / [en] For the flow of fluids to occur in a production system, the
fluids energy in the reservoir must be capable of
overcoming load losses along various system components.
Fluids must flow from the reservoir to the surface
separators through the wells tubing, wellhead equipment
and flowing lines. The production system design must not be
executed by considering separately the performance of the
reservoir and the flow calculation across the tubing,
surface equipment and lines. The evaluation of a gas
production system performance requires applying a total
analysis method that considers the drainage at various
system segments simultaneously. The total analysis of a
production system can be effected through a graphical-
analytical method to be used for the completion design of
oil and gas wells with or without artificial lift. In terms
of total analysis concept, a production system is basically
comprised of the following components: reservoir, vertical
tubing, horizontal flow lines and separator, including
bottom-hole valves and surface choke, where some pressure
loss occurs in relation to the flow rate. The flow behavior
of each component in a total production system is
represented by an equation that relates the pressure at one
selected node and the production flow rate. The sequential
pressure calculation at the different nodes of various
system components allows determining the well s production
flow rate. In order to calculate the relationship between
the flow rate and the pressure changes that occur during
fluid transportation to the surface, with the resulting
variation of the fluid s engineering, flow correlations in
vertical and horizontal tubing, and restrictions. Finally,
we proceeded to analyze the methodology s sensitivity to
the use of different flow performance relations and flow
calculation methods in wells and lines.
|
Page generated in 0.066 seconds