• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Funkční gramotnost u dospívající mládeže / Functional literacy among adolescents

Honsů, Renata January 2015 (has links)
Diploma thesis "Functional literacy among adolescents" discusses the components of functional literacy. The theoretical part of the thesis briefly introduces the development of functional literacy. It shows the functional literacy, and how its properties affect the individual. It describes each specialization components of functional literacy and represents social views in defined areas of the company (community). It also states components of functional literacy, describes their active participation in the field of functional literacy and the effect on the overall formation. It focuses on the potential negative impacts of these components. In the research, part of the thesis presents the conclusions of the survey.
2

Path integral formulation of dissipative quantum dynamics

Novikov, Alexey 06 June 2005 (has links) (PDF)
In this thesis the path integral formalism is applied to the calculation of the dynamics of dissipative quantum systems. The time evolution of a system of bilinearly coupled bosonic modes is treated using the real-time path integral technique in coherent-state representation. This method is applied to a damped harmonic oscillator within the Caldeira-Leggett model. In order to get the stationary trajectories the corresponding Lagrangian function is diagonalized and then the path integrals are evaluated by means of the stationary-phase method. The time evolution of the reduced density matrix in the basis of coherent states is given in simple analytic form for weak system-bath coupling, i.e. the so-called rotating-wave terms can be evaluated exactly but the non-rotating-wave terms only in a perturbative manner. The validity range of the rotating-wave approximation is discussed from the viewpoint of spectral equations. In addition, it is shown that systems without initial system-bath correlations can exhibit initial jumps in the population dynamics even for rather weak dissipation. Only with initial correlations the classical trajectories for the system coordinate can be recovered. The path integral formalism in a combined phase-space and coherent-state representation is applied to the problem of curve-crossing dynamics. The system of interest is described by two coupled one-dimensional harmonic potential energy surfaces interacting with a heat bath. The mapping approach is used to rewrite the Lagrangian function of the electronic part of the system. Using the Feynman-Vernon influence-functional method the bath is eliminated whereas the non-Gaussian part of the path integral is treated using the perturbation theory in the small coordinate shift between potential energy surfaces. The vibrational and the population dynamics is considered in a lowest order of the perturbation. The dynamics of a Gaussian wave packet is analyzed along a one-dimensional reaction coordinate. Also the damping rate of coherence in the electronic part of the relevant system is evaluated within the ordinary and variational perturbation theory. The analytic expressions for the rate functions are obtained in the low and high temperature regimes.
3

Path integral formulation of dissipative quantum dynamics

Novikov, Alexey 13 May 2005 (has links)
In this thesis the path integral formalism is applied to the calculation of the dynamics of dissipative quantum systems. The time evolution of a system of bilinearly coupled bosonic modes is treated using the real-time path integral technique in coherent-state representation. This method is applied to a damped harmonic oscillator within the Caldeira-Leggett model. In order to get the stationary trajectories the corresponding Lagrangian function is diagonalized and then the path integrals are evaluated by means of the stationary-phase method. The time evolution of the reduced density matrix in the basis of coherent states is given in simple analytic form for weak system-bath coupling, i.e. the so-called rotating-wave terms can be evaluated exactly but the non-rotating-wave terms only in a perturbative manner. The validity range of the rotating-wave approximation is discussed from the viewpoint of spectral equations. In addition, it is shown that systems without initial system-bath correlations can exhibit initial jumps in the population dynamics even for rather weak dissipation. Only with initial correlations the classical trajectories for the system coordinate can be recovered. The path integral formalism in a combined phase-space and coherent-state representation is applied to the problem of curve-crossing dynamics. The system of interest is described by two coupled one-dimensional harmonic potential energy surfaces interacting with a heat bath. The mapping approach is used to rewrite the Lagrangian function of the electronic part of the system. Using the Feynman-Vernon influence-functional method the bath is eliminated whereas the non-Gaussian part of the path integral is treated using the perturbation theory in the small coordinate shift between potential energy surfaces. The vibrational and the population dynamics is considered in a lowest order of the perturbation. The dynamics of a Gaussian wave packet is analyzed along a one-dimensional reaction coordinate. Also the damping rate of coherence in the electronic part of the relevant system is evaluated within the ordinary and variational perturbation theory. The analytic expressions for the rate functions are obtained in the low and high temperature regimes.

Page generated in 0.0801 seconds