11 |
Graph Mining for Influence Maximization in Social Networks / Fouille de Graphes pour Maximisation de l'Influence dans les Réseaux SociauxRossi, Maria 17 November 2017 (has links)
La science moderne des graphes est apparue ces dernières années comme un domaine d'intérêt et a apporté des progrès significatifs à notre connaissance des réseaux. Jusqu'à récemment, les algorithmes d'exploration de données existants étaient destinés à des données structurées / relationnelles, alors que de nombreux ensembles de données nécessitent une représentation graphique, comme les réseaux sociaux, les réseaux générés par des données textuelles, les structures protéiques 3D ou encore les composés chimiques. Il est donc crucial de pouvoir extraire des informations pertinantes à partir de ce type de données et, pour ce faire, les méthodes d'extraction et d'analyse des graphiques ont été prouvées essentielles.L'objectif de cette thèse est d'étudier les problèmes dans le domaine de la fouille de graphes axés en particulier sur la conception de nouveaux algorithmes et d'outils liés à la diffusion d'informations et plus spécifiquement sur la façon de localiser des entités influentes dans des réseaux réels. Cette tâche est cruciale dans de nombreuses applications telles que la diffusion de l'information, les contrôles épidémiologiques et le marketing viral.Dans la première partie de la thèse, nous avons étudié les processus de diffusion dans les réseaux sociaux ciblant la recherche de caractéristiques topologiques classant les entités du réseau en fonction de leurs capacités influentes. Nous nous sommes spécifiquement concentrés sur la décomposition K-truss qui est une extension de la décomposition k-core. On a montré que les noeuds qui appartiennent au sous-graphe induit par le maximal K-truss présenteront de meilleurs proprietés de propagation par rapport aux critères de référence. De tels épandeurs ont la capacité non seulement d'influencer une plus grande partie du réseau au cours des premières étapes d'un processus d'étalement, mais aussi de contaminer une plus grande partie des noeuds.Dans la deuxième partie de la thèse, nous nous sommes concentrés sur l'identification d'un groupe de noeuds qui, en agissant ensemble, maximisent le nombre attendu de nœuds influencés à la fin du processus de propagation, formellement appelé Influence Maximization (IM). Le problème IM étant NP-hard, il existe des algorithmes efficaces garantissant l’approximation de ses solutions. Comme ces garanties proposent une approximation gloutonne qui est coûteuse en termes de temps de calcul, nous avons proposé l'algorithme MATI qui réussit à localiser le groupe d'utilisateurs qui maximise l'influence, tout en étant évolutif. L'algorithme profite des chemins possibles créés dans le voisinage de chaque nœud et précalcule l'influence potentielle de chaque nœud permettant ainsi de produire des résultats concurrentiels, comparés à ceux des algorithmes classiques.Finallement, nous étudions le point de vue de la confidentialité quant au partage de ces bons indicateurs d’influence dans un réseau social. Nous nous sommes concentrés sur la conception d'un algorithme efficace, correct, sécurisé et de protection de la vie privée, qui résout le problème du calcul de la métrique k-core qui mesure l'influence de chaque noeud du réseau. Nous avons spécifiquement adopté une approche de décentralisation dans laquelle le réseau social est considéré comme un système Peer-to-peer (P2P). L'algorithme est construit de telle sorte qu'il ne devrait pas être possible pour un nœud de reconstituer partiellement ou entièrement le graphe en utilisant les informations obtiennues lors de son exécution. Notre contribution est un algorithme incrémental qui résout efficacement le problème de maintenance de core en P2P tout en limitant le nombre de messages échangés et les calculs. Nous fournissons également une étude de sécurité et de confidentialité de la solution concernant la désanonymisation des réseaux, nous montrons ainsi la rélation avec les strategies d’attaque précédemment definies tout en discutant les contres-mesures adaptés. / Modern science of graphs has emerged the last few years as a field of interest and has been bringing significant advances to our knowledge about networks. Until recently the existing data mining algorithms were destined for structured/relational data while many datasets exist that require graph representation such as social networks, networks generated by textual data, 3D protein structures and chemical compounds. It has become therefore of crucial importance to be able to extract meaningful information from that kind of data and towards this end graph mining and analysis methods have been proven essential. The goal of this thesis is to study problems in the area of graph mining focusing especially on designing new algorithms and tools related to information spreading and specifically on how to locate influential entities in real-world networks. This task is crucial in many applications such as information diffusion, epidemic control and viral marketing. In the first part of the thesis, we have studied spreading processes in social networks focusing on finding topological characteristics that rank entities in the network based on their influential capabilities. We have specifically focused on the K-truss decomposition which is an extension of the core decomposition of the graph. Extensive experimental analysis showed that the nodes that belong to the maximal K-truss subgraph show a better spreading behavior when compared to baseline criteria. Such spreaders can influence a greater part of the network during the first steps of a spreading process but also the total fraction of the influenced nodes at the end of the epidemic is greater. We have also observed that node members of such dense subgraphs are those achieving the optimal spreading in the network.In the second part of the thesis, we focused on identifying a group of nodes that by acting all together maximize the expected number of influenced nodes at the end of the spreading process, formally called Influence Maximization (IM). The IM problem is actually NP-hard though there exist approximation guarantees for efficient algorithms that can solve the problem while obtaining a solution within the 63% of optimal classes of models. As those guarantees propose a greedy approximation which is computationally expensive especially for large graphs, we proposed the MATI algorithm which succeeds in locating the group of users that maximize the influence while also being scalable. The algorithm takes advantage the possible paths created in each node’s neighborhood to precalculate each node’s potential influence and produces competitive results in quality compared to those of baseline algorithms such as the Greedy, LDAG and SimPath. In the last part of the thesis, we study the privacy point of view of sharing such metrics that are good influential indicators in a social network. We have focused on designing an algorithm that addresses the problem of computing through an efficient, correct, secure, and privacy-preserving algorithm the k-core metric which measures the influence of each node of the network. We have specifically adopted a decentralization approach where the social network is considered as a Peer-to-peer (P2P) system. The algorithm is built based on the constraint that it should not be possible for a node to reconstruct partially or entirely the graph using the information they obtain during its execution. While a distributed algorithm that computes the nodes’ coreness is already proposed, dynamic networks are not taken into account. Our main contribution is an incremental algorithm that efficiently solves the core maintenance problem in P2P while limiting the number of messages exchanged and computations. We provide a security and privacy analysis of the solution regarding network de-anonimization and show how it relates to previously defined attacks models and discuss countermeasures.
|
12 |
Identifying Important Members in a Complex Online Social Network / Identifiering av inflytelserika medlemmar i ett komplext socialt nätverkHannesson, Kristófer January 2017 (has links)
The success of Online Social Networks (OSN) is influenced by having the ability to understand who is important. An OSN can be viewed as a graph where users are vertices and their interactions are edges. Graph-based methods can enable identification of people in these networks who for example exhibit the characteristics of leaders, influencers, or information brokers. A Massively Multiplayer Online game (MMO) is a type of OSN. It is a video game where a large number of players interact with each other in a virtual world. Using behavioral data of players' interactions within the space-based MMO EVE Online, the aim of this thesis is to conduct an experimental study to evaluate the effectiveness of a number graph-based methods at finding important players within different behavioral contexts. For that purpose we extract behavioral data to construct four distinct graphs: Fleet, Aggression, Mail, and Market. We also create a ground truth data set of important players based on heuristics from key gameplay categories. We experiment on these graphs with a selection of graph centrality, Influence Maximization, and heuristic methods. We explore how they perform in terms of ground truth players found per graph and execution time, and when combining results from all graphs. Our results indicate that there is no optimal method across graphs but rather the method and graph should be chosen according to the business intention at each time. To that end we provide recommendations as well as potential business case usages. We believe that this study serves as a starting point towards more graph based analysis within the EVE Online virtual universe where there are many unexplored research opportunities. / Framgången hos Online Sociala Nätverk (OSN) påverkas av förmågan att förstå vem som är viktig. Ett OSN kan ses som en graf där användarna är noder och deras interaktioner ärbågar. Grafbaserade metoder kan möjliggöra identifiering av personer i dessa nätverk somtill exempel uppvisar egenskaper hos ledare, påverkare eller informationsförmedlare. Ett Massively Multiplayer Online game (MMO) representerar en typ av OSN. Det är ett datorrollspel där ett stort antal spelare interagerar med varandra i en virtuell värld. Genomatt använda beteendedata om spelarnas interaktioner i den rymdbaserade MMO:n EVE Online är målet med denna avhandling att genomföra en experimentell studie för att utvärdera effektiviteten hos ett antal grafbaserade metoder för att hitta viktiga spelare inom olika beteendemässiga sammanhang. För det ändamålet extraherar vi beteendedata för att konstruera fyra distinkta grafer: Fleet, Aggression, Mail och Market. Vi skapar också ett ground truth" dataset av viktiga spelare baserat på heuristik från viktiga spelkategorier. Vi utför experiment på dessa grafer med ett urval av grafcentralitet, Influence Maximization och heuristiska metoder. Vi undersöker hur metoderna presterar i termer av antal ground truth spelare som finns per graf och över grafer, och i termer av exekveringstid. Våra resultat tyder på att det inte finns någon optimal metod för alla grafer. Metoden och grafen bör väljas beroende på intentionen vid varje tillfälle. För detta ändamål tillhandahåller vi rekommendationer samt potentiella affärsmässiga användningsområden. Vi tror att denna studie tjänar som utgångspunkt för mer grafbaserad analys inom EVEOnlines virtuella universum där det finns många outforskade forskningsmöjligheter.
|
13 |
Identifying Influential Agents In Social SystemsMaghami, Mahsa 01 January 2014 (has links)
This dissertation addresses the problem of influence maximization in social networks. In- fluence maximization is applicable to many types of real-world problems, including modeling contagion, technology adoption, and viral marketing. Here we examine an advertisement domain in which the overarching goal is to find the influential nodes in a social network, based on the network structure and the interactions, as targets of advertisement. The assumption is that advertisement budget limits prevent us from sending the advertisement to everybody in the network. Therefore, a wise selection of the people can be beneficial in increasing the product adoption. To model these social systems, agent-based modeling, a powerful tool for the study of phenomena that are difficult to observe within the confines of the laboratory, is used. To analyze marketing scenarios, this dissertation proposes a new method for propagating information through a social system and demonstrates how it can be used to develop a product advertisement strategy in a simulated market. We consider the desire of agents toward purchasing an item as a random variable and solve the influence maximization problem in steady state using an optimization method to assign the advertisement of available products to appropriate messenger agents. Our market simulation 1) accounts for the effects of group membership on agent attitudes 2) has a network structure that is similar to realistic human systems 3) models inter-product preference correlations that can be learned from market data. The results on synthetic data show that this method is significantly better than network analysis methods based on centrality measures. The optimized influence maximization (OIM) described above, has some limitations. For instance, it relies on a global estimation of the interaction among agents in the network, rendering it incapable of handling large networks. Although OIM is capable of finding the influential nodes in the social network in an optimized way and targeting them for advertising, in large networks, performing the matrix operations required to find the optimized solution is intractable. To overcome this limitation, we then propose a hierarchical influence maximization (HIM) iii algorithm for scaling influence maximization to larger networks. In the hierarchical method the network is partitioned into multiple smaller networks that can be solved exactly with optimization techniques, assuming a generalized IC model, to identify a candidate set of seed nodes. The candidate nodes are used to create a distance-preserving abstract version of the network that maintains an aggregate influence model between partitions. The budget limitation for the advertising dictates the algorithm’s stopping point. On synthetic datasets, we show that our method comes close to the optimal node selection, at substantially lower runtime costs. We present results from applying the HIM algorithm to real-world datasets collected from social media sites with large numbers of users (Epinions, SlashDot, and WikiVote) and compare it with two benchmarks, PMIA and DegreeDiscount, to examine the scalability and performance. Our experimental results reveal that HIM scales to larger networks but is outperformed by degreebased algorithms in highly-connected networks. However, HIM performs well in modular networks where the communities are clearly separable with small number of cross-community edges. This finding suggests that for practical applications it is useful to account for network properties when selecting an influence maximization method.
|
14 |
Exploring the relationship between network topology and braess paradoxPrabhakar, Samuel Giftson 10 May 2024 (has links) (PDF)
The Braess Paradox is a rare phenomenon that only occurs under specific scenarios. This project aims to study the probability of the Braess Paradox occurring in a Directed Weighted Graph while the number of edges increases. The graphs in the experiment are focused on studying the occurrence of the Braess Paradox in a directed weighted scale-free network while transforming it into a directed weighted complete graph. A simulation model is used to simulate the bots traveling through a network to detect the occurrence of the Braess Paradox, considering the increase of directed weighted edges. A Graph Neural Network (GNN) is later used to train on the data produced by the simulation model.
|
15 |
Influence Dynamics on Social NetworksVenkataramanan, Srinivasan January 2014 (has links) (PDF)
With online social networks such as Facebook and Twitter becoming globally popular, there is renewed interest in understanding the structural and dynamical properties of social networks. In this thesis we study several stochastic models arising in the context of the spread of influence or information in social networks. Our objective is to provide compact and accurate quantitative descriptions of the spread processes, to understand the effects of various system parameters, and to design policies for the control of such diffusions.
One of the well established models for influence spread in social networks is the threshold model. An individual’s threshold indicates the minimum level of “influence” that must be exerted, by other members of the population engaged in some activity, before the individual will join the activity. We begin with the well-known Linear Threshold (LT) model introduced by Kempe et al. [1]. We analytically characterize the expected influence for a given initial set under the LT model, and provide an equivalent interpretation in terms of acyclic path probabilities in a Markov chain. We derive explicit optimal initial sets for some simple networks and also study the effectiveness of the Pagerank [2] algorithm for the problem of influence maximization. Using insights from our analytical characterization, we then propose a computationally efficient G1-sieving algorithm for influence maximization and show that it performs on par with the greedy algorithm, through experiments on a coauthorship dataset.
The Markov chain characterisation gives only limited insights into the dynamics of influence spread and the effects of the various parameters. We next provide such insights in a restricted setting, namely that of a homogeneous version of the LT model but with a general threshold distribution, by taking the fluid limit of a probabilistically scaled version of the spread Markov process. We observe that the threshold distribution features in the fluid limit via its hazard function. We study the effect of various threshold distributions and show that the influence evolution can exhibit qualitatively different behaviors, depending on the threshold distribution, even in a homogeneous setting. We show that under the exponential threshold distribution, the LT model becomes equivalent to the SIR (Susceptible-Infected-Recovered) epidemic model [3]. We also show how our approach is easily amenable to networks with heterogeneous community structures.
Hundreds of millions of people today interact with social networks via their mobile devices. If the peer-to-peer radios on such devices are used, then influence spread and information spread can take place opportunistically when pairs of such devices come in proximity. In this context, we develop a framework for content delivery in mobile opportunistic networks with joint evolution of content popularity and availability. We model the evolution of influence and content spread using a multi-layer controlled epidemic model, and, using the monotonicity properties of the o.d.e.s, prove that a time-threshold policy for copying to relay nodes is delay-cost optimal.
Information spread occurs seldom in isolation on online social networks. Several contents might spread simultaneously, competing for the common resource of user attention. Hence, we turn our attention to the study of competition between content creators for a common population, across multiple social networks, as a non-cooperative game. We characterize the best response function, and observe that it has a threshold structure. We obtain the Nash equilibria and study the effect of cost parameters on the equilibrium budget allocation by the content creators. Another key aspect to capturing competition between contents, is to understand how a single end-user receives and processes content. Most social networks’ interface involves a timeline, a reverse chronological list of contents displayed to the user, similar to an email inbox. We study competition between content creators for visibility on a social network user’s timeline. We study a non-cooperative game among content creators over timelines of fixed size, show that the equilibrium rate of operation under a symmetric setting, exhibits a non-monotonic behavior with increasing number of players. We then consider timelines of infinite size, along with a behavioral model for user’s scanning behavior, while also accounting for variability in quality (influence weight) among content creators. We obtain integral equations, that capture the evolution of average influence of competing contents on a social network user’s timeline, and study various content competition formulations involving quality and quantity.
|
16 |
SOCIAL NETWORK ARCHITECTURES AND APPLICATIONSZheng, Huanyang January 2017 (has links)
Rather than being randomly wired together, the components of complex network systems are recently reported to represent a scale-free architecture, in which the node degree distribution follows power-law. While social networks are scale-free, it is natural to utilize their structural properties in some social network applications. As a result, this dissertation explores social network architectures, and in turn, leverages these architectures to facilitate some influence and information propagation applications. Social network architectures are analyzed in two different aspects. The first aspect focuses on the node degree snowballing effects (i.e., degree growth effects) in social networks, which is based on an age-sensitive preferential attachment model. The impact of the initial links is explored, in terms of accelerating the node degree snowballing effects. The second aspect focuses on Nested Scale-Free Architectures (NSFAs) for social networks. The scale-free architecture is a classic concept, which means that the node degree distribution follows the power-law distribution. `Nested' indicates that the scale-free architecture is preserved when low-degree nodes and their associated connections are iteratively removed. NSFA has a bounded hierarchy. Based on the social network structure, this dissertation explores two influence propagation applications for the Social Influence Maximization Problem (SIMP). The first application is a friend recommendation strategy with the perspective of social influence maximization. For the system provider, the objective is to recommend a fixed number of new friends to a given user, such that the given user can maximize his/her social influence through making new friends. This problem is proved to be NP-hard by reduction from the SIMP. A greedy friend recommendation algorithm with an approximation ratio of $1-e^{-1}$ is proposed. The second application studies the SIMP with the crowd influence, which is NP-hard, monotone, non-submodular, and inapproximable in general graphs. However, since user connections in Online Social Networks (OSNs) are not random, approximations can be obtained by leveraging the structural properties of OSNs. The modularity, denoted by $\Delta$, is proposed to measure to what degree this problem violates the submodularity. Two approximation algorithms are proposed with ratios of $\frac{1}{\Delta+2}$ and $1-e^{-1/(\Delta+1)}$, respectively. Beside the influence propagation applications, this dissertation further explores three different information propagation applications. The first application is a social network quarantine strategy, which can eliminate epidemic outbreaks with minimal isolation costs. This problem is NP-hard. An approximation algorithm with a ratio of 2 is proposed through utilizing the problem properties of feasibility and minimality. The second application is a rating prediction scheme, called DynFluid, based on the fluid dynamics. DynFluid analogizes the rating reference among the users in OSNs to the fluid flow among containers. The third application is an information cascade prediction framework: given the social current cascade and social topology, the number of propagated users at a future time slot is predicted. To reduce prediction time complexities, the spatiotemporal cascade information (a larger size of data) is decomposed to user characteristics (a smaller size of data) for subsequent predictions. All these three applications are based on the social network structure. / Computer and Information Science
|
17 |
Dinâmicas de propagação de informações e rumores em redes sociais / Information and rumor propagation in social networksOliveros, Didier Augusto Vega 12 May 2017 (has links)
As redes sociais se tornaram um novo e importante meio de intercâmbio de informações, ideias e comunicação que aproximam parentes e amigos sem importar as distâncias. Dada a natureza aberta da Internet, as informações podem fluir muito fácil e rápido na população. A rede pode ser representada como um grafo, onde os indivíduos ou organizações são o conjunto de vértices e os relacionamentos ou conexões entre os vértices são o conjunto de arestas. Além disso, as redes sociais representam intrinsecamente a estrutura de um sistema mais complexo que é a sociedade. Estas estruturas estão relacionadas com as características dos indivíduos. Por exemplo, os indivíduos mais populares são aqueles com maior número de conexões. Em particular, é aceito que a estrutura da rede pode afetar a forma como a informação se propaga nas redes sociais. No entanto, ainda não está claro como a estrutura influencia na propagação, como medir seu impacto e quais as possíveis estratégias para controlar o processo de difusão. Nesta tese buscamos contribuir nas análises da interação entre as dinâmicas de propagação de informações e rumores e a estrutura da rede. Propomos um modelo de propagação mais realista considerando a heterogeneidade dos indivíduos na transmissão de ideias ou informações. Nós confirmamos a presença de propagadores mais influentes na dinâmica de rumor e observamos que é possível melhorar ou reduzir expressivamente a difusão de uma informação ao selecionar uma fração muito pequena de propagadores influentes. No caso em que se objetiva selecionar um conjunto de propagadores iniciais que maximizem a difusão de informação, a melhor opção é selecionar os indivíduos mais centrais ou importantes nas comunidades. Porém, se o padrão de conexão dos vértices está negativamente correlacionado, a melhor alternativa é escolher entre os indivíduos mais centrais de toda a rede. Por outro lado, através de abordagens topológicas e de técnicas de aprendizagem máquina, identificamos aos propagadores menos influentes e mostramos que eles atuam como um firewall no processo de difusão. Nós propomos um método adaptativo de reconexão entre os vértices menos influentes para um indivíduo central da rede, sem afetar a distribuição de grau da rede. Aplicando o nosso método em uma pequena fração de propagadores menos influentes, observamos um aumento importante na capacidade de propagação desses vértices e da rede toda. Nossos resultados vêm de uma ampla gama de simulações em conjuntos de dados artificiais e do mundo real e a comparação com modelos clássicos de propagação da literatura. A propagação da informação em redes é de grande relevância para as áreas de publicidade e marketing, educação, campanhas políticas ou de saúde, entre outras. Os resultados desta tese podem ser aplicados e estendidos em diferentes campos de pesquisa como redes biológicas e modelos de comportamento social animal, modelos de propagação de epidemias e na saúde pública, entre outros. / On-line Social networks become a new and important medium of exchange of information, ideas and communication that approximate relatives and friends no matter the distances. Given the open nature of the Internet, the information can flow very easy and fast in the population. The network can be represented as a graph, where individuals or organizations are the set of vertices and the relationship or connection among the vertices are the set of edge. Moreover, the social networks are also intrinsically representing the structure of a more complex system that is the society. These structures are related with characteristics of the subjects, like the most popular individuals have many connections, the correlation in the connectivity of vertices that is a trace of homophily phenomenon, among many others. In particular, it is well accepted that the structure of the network can affect the way the information propagates on the social networks. However, how the structure impacts in the propagation, how to measure that impact and what are the strategies for controlling the propagation of some information, it is still unclear. In this thesis, we seek to contribute in the analysis of the interplay between the dynamics of information and rumor spreading and the structure of the networks. We propose a more realistic propagation model considering the heterogeneity of the individuals in the transmission of ideas or information. We confirm the presence of influential spreaders in the rumor propagation process and found that selecting a very small fraction of influential spreaders, it is possible to expressively improve or reduce de diffusion of some information on the network. In the case we want to select a set of initial spreaders that maximize the information diffusion on the network, the simple and best alternative is to select the most central or important individuals from the networks communities. But, if the pattern of connection of the networks is negatively correlated, the best alternative is to choose from the most central individuals in the whole network. On the other hand, we identify, by topological approach and machine learning techniques, the least influential spreaders and show that they act as a firewall in the propagation process. We propose an adaptative method that rewires one edge for a given vertex to a central individual, without affecting the overall distribution of connection. Applying our proposed method in a little fraction of least influential spreaders, we observed an important increasing in the capacity of propagation of these vertices and in the overall network. Our results are from a wide range of simulations in artificial and real-world data sets and the comparison with the classical rumor propagation model. The propagation of information is of greatest relevance for publicity and marketing area, education, political or health campaigns, among others. The results of this these might be applicable and extended in different research fields like biological networks and animal social behavior models.
|
18 |
Big Networks: Analysis and Optimal ControlNguyen, Hung The 01 January 2018 (has links)
The study of networks has seen a tremendous breed of researches due to the explosive spectrum of practical problems that involve networks as the access point. Those problems widely range from detecting functionally correlated proteins in biology to finding people to give discounts and gain maximum popularity of a product in economics. Thus, understanding and further being able to manipulate/control the development and evolution of the networks become critical tasks for network scientists. Despite the vast research effort putting towards these studies, the present state-of-the-arts largely either lack of high quality solutions or require excessive amount of time in real-world `Big Data' requirement.
This research aims at affirmatively boosting the modern algorithmic efficiency to approach practical requirements. That is developing a ground-breaking class of algorithms that provide simultaneously both provably good solution qualities and low time and space complexities. Specifically, I target the important yet challenging problems in the three main areas:
Information Diffusion: Analyzing and maximizing the influence in networks and extending results for different variations of the problems.
Community Detection: Finding communities from multiple sources of information.
Security and Privacy: Assessing organization vulnerability under targeted-cyber attacks via social networks.
|
19 |
Influencers characterization in a social network for viral marketing perspectives / Caractérisation des influenceurs dans un réseau social pour des perspectives de Marketing viralJendoubi, Siwar 16 December 2016 (has links)
Le marketing viral est une nouvelle forme de marketing qui exploite les réseaux sociaux afin de promouvoir un produit, une marque, etc. Il se fonde sur l'influence qu'exerce un utilisateur sur un autre. La maximisation de l'influence est le problème scientifique pour le marketing viral. En fait, son but principal est de sélectionner un ensemble d'utilisateurs d'influences qui pourraient adopter le produit et déclencher une large cascade d'influence et d'adoption à travers le réseau. Dans cette thèse, nous proposons deux modèles de maximisation de l'influence sur les réseaux sociaux. L'approche proposée utilise la théorie des fonctions de croyance pour estimer l'influence des utilisateurs. En outre, nous introduisons une mesure d'influence qui fusionne de nombreux aspects d'influence, comme l'importance de l'utilisateur sur le réseau et la popularité de ces messages. Ensuite, nous proposons trois scénarii de marketing viral. Pour chaque scénario, nous introduisons deux mesures d'influence. Le premier scénario cherche les influenceurs ayant une opinion positive sur le produit. Le second scénario concerne les influenceurs ayant une opinion positive et qui influencent des utilisateurs ayant une opinion positive et le dernier scénario cherche des influenceurs ayant une opinion positive et qui influencent des utilisateurs ayant une opinion négative. Dans un deuxième lieu, nous nous sommes tournés vers un autre problème important, qui est le problème de la prédiction du sujet du message social. En effet, le sujet est également un paramètre important dans le problème de la maximisation de l'influence. A cet effet, nous introduisons quatre algorithmes de classification qui ne nécessitent pas le contenu du message pour le classifier, nous avons juste besoin de ces traces de propagation. Dans nos expérimentations, nous comparons les solutions proposées aux solutions existantes et nous montrons la performance des modèles de maximisation de l'influence et les classificateurs proposés. / The Viral Marketing is a relatively new form of marketing that exploits social networks in order to promote a product, a brand, etc. It is based on the influence that exerts one user on another. The influence maximization is the scientific problem for the Viral Marketing. In fact, its main purpose is to select a set of influential users that could adopt the product and trigger a large cascade of influence and adoptions through the network. In this thesis, we propose two evidential influence maximization models for social networks. The proposed approach uses the theory of belief functions to estimate users influence. Furthermore, we introduce an influence measure that fuses many influence aspects, like the importance of the user in the network and the popularity of his messages. Next, we propose three Viral Marketing scenarios. For each scenario we introduce two influence measures. The first scenario is about influencers having a positive opinion about the product. The second scenario searches for influencers having a positive opinion and influence positive opinion users and the last scenario looks for influencers having a positive opinion and influence negative opinion users. On the other hand, we turned to another important problem which is about the prediction of the social message topic. Indeed, the topic is also an important parameter in the influence maximization problem. For this purpose, we introduce four classification algorithms that do not need the content of the message to classify it, they just need its propagation traces. In our experiments, we compare the proposed solutions to existing ones and we show the performance of the proposed influence maximization solutions and the proposed classifiers.
|
20 |
Dinâmicas de propagação de informações e rumores em redes sociais / Information and rumor propagation in social networksDidier Augusto Vega Oliveros 12 May 2017 (has links)
As redes sociais se tornaram um novo e importante meio de intercâmbio de informações, ideias e comunicação que aproximam parentes e amigos sem importar as distâncias. Dada a natureza aberta da Internet, as informações podem fluir muito fácil e rápido na população. A rede pode ser representada como um grafo, onde os indivíduos ou organizações são o conjunto de vértices e os relacionamentos ou conexões entre os vértices são o conjunto de arestas. Além disso, as redes sociais representam intrinsecamente a estrutura de um sistema mais complexo que é a sociedade. Estas estruturas estão relacionadas com as características dos indivíduos. Por exemplo, os indivíduos mais populares são aqueles com maior número de conexões. Em particular, é aceito que a estrutura da rede pode afetar a forma como a informação se propaga nas redes sociais. No entanto, ainda não está claro como a estrutura influencia na propagação, como medir seu impacto e quais as possíveis estratégias para controlar o processo de difusão. Nesta tese buscamos contribuir nas análises da interação entre as dinâmicas de propagação de informações e rumores e a estrutura da rede. Propomos um modelo de propagação mais realista considerando a heterogeneidade dos indivíduos na transmissão de ideias ou informações. Nós confirmamos a presença de propagadores mais influentes na dinâmica de rumor e observamos que é possível melhorar ou reduzir expressivamente a difusão de uma informação ao selecionar uma fração muito pequena de propagadores influentes. No caso em que se objetiva selecionar um conjunto de propagadores iniciais que maximizem a difusão de informação, a melhor opção é selecionar os indivíduos mais centrais ou importantes nas comunidades. Porém, se o padrão de conexão dos vértices está negativamente correlacionado, a melhor alternativa é escolher entre os indivíduos mais centrais de toda a rede. Por outro lado, através de abordagens topológicas e de técnicas de aprendizagem máquina, identificamos aos propagadores menos influentes e mostramos que eles atuam como um firewall no processo de difusão. Nós propomos um método adaptativo de reconexão entre os vértices menos influentes para um indivíduo central da rede, sem afetar a distribuição de grau da rede. Aplicando o nosso método em uma pequena fração de propagadores menos influentes, observamos um aumento importante na capacidade de propagação desses vértices e da rede toda. Nossos resultados vêm de uma ampla gama de simulações em conjuntos de dados artificiais e do mundo real e a comparação com modelos clássicos de propagação da literatura. A propagação da informação em redes é de grande relevância para as áreas de publicidade e marketing, educação, campanhas políticas ou de saúde, entre outras. Os resultados desta tese podem ser aplicados e estendidos em diferentes campos de pesquisa como redes biológicas e modelos de comportamento social animal, modelos de propagação de epidemias e na saúde pública, entre outros. / On-line Social networks become a new and important medium of exchange of information, ideas and communication that approximate relatives and friends no matter the distances. Given the open nature of the Internet, the information can flow very easy and fast in the population. The network can be represented as a graph, where individuals or organizations are the set of vertices and the relationship or connection among the vertices are the set of edge. Moreover, the social networks are also intrinsically representing the structure of a more complex system that is the society. These structures are related with characteristics of the subjects, like the most popular individuals have many connections, the correlation in the connectivity of vertices that is a trace of homophily phenomenon, among many others. In particular, it is well accepted that the structure of the network can affect the way the information propagates on the social networks. However, how the structure impacts in the propagation, how to measure that impact and what are the strategies for controlling the propagation of some information, it is still unclear. In this thesis, we seek to contribute in the analysis of the interplay between the dynamics of information and rumor spreading and the structure of the networks. We propose a more realistic propagation model considering the heterogeneity of the individuals in the transmission of ideas or information. We confirm the presence of influential spreaders in the rumor propagation process and found that selecting a very small fraction of influential spreaders, it is possible to expressively improve or reduce de diffusion of some information on the network. In the case we want to select a set of initial spreaders that maximize the information diffusion on the network, the simple and best alternative is to select the most central or important individuals from the networks communities. But, if the pattern of connection of the networks is negatively correlated, the best alternative is to choose from the most central individuals in the whole network. On the other hand, we identify, by topological approach and machine learning techniques, the least influential spreaders and show that they act as a firewall in the propagation process. We propose an adaptative method that rewires one edge for a given vertex to a central individual, without affecting the overall distribution of connection. Applying our proposed method in a little fraction of least influential spreaders, we observed an important increasing in the capacity of propagation of these vertices and in the overall network. Our results are from a wide range of simulations in artificial and real-world data sets and the comparison with the classical rumor propagation model. The propagation of information is of greatest relevance for publicity and marketing area, education, political or health campaigns, among others. The results of this these might be applicable and extended in different research fields like biological networks and animal social behavior models.
|
Page generated in 0.1174 seconds