Spelling suggestions: "subject:"info:entrepo/classification/ddc/540"" "subject:"info:restrepo/classification/ddc/540""
331 |
Charakterisierung und Applikation self-assembly-fähiger Moleküle auf oxidischen OberflächenBusch, Gernot 22 April 2005 (has links)
Moderne Methoden der Oberflächenbehandlung können Oberflächen mit besonderen Eigenschaften versehen. Diese Eigenschaften werden zunehmend durch ultradünne Schichten mit Schichtdicken von einigen Nanometern erzeugt, da mit minimalem Materialaufwand definierte Resultate erreichbar sind. Die meisten Metalle überziehen sich mit einer Oxidschicht, deren Eigenschaften von den herrschenden Umgebungsbedingungen bestimmt werden. Diese Oxidschicht bildet die Oberfläche des Festkörpers, und weist andere Eigenschaften auf als der Festkörper selbst. Darüber hinaus beeinflussen die Rauhigkeit sowie eventuell vorliegende Legierungsbestandteile die Oberflächenbeschaffenheit. Besonders geeignet zum Erzeugen ultradünner oder monomolekularer Schichten ist der Prozess der Selbstorganisation, bei dem man sich zu Nutze macht, dass oberflächenaktive Moleküle mit sich selbst und einem Substrat in Wechselwirkung treten können. Zum Verständnis der ablaufenden Vorgänge ist die Kenntnis der Prozesskinetik sowie die Charakterisierung der Substratoberfläche vor und nach der Adsorption erforderlich. Die Größenverhältnisse zwischen den adsorbierten Molekülen und der Rauheit der Oberfläche erschweren die Charakterisierung der vorliegenden Ordnung und Orientierung der erzeugten dünnen Schichten. In dieser Arbeit sind Untersuchung des Schichtbildungsverhaltens und die Charakterisierung der erzeugten Schichten aus Phosphon- und Phosphorsäurederivaten in Abhängigkeit verschiedener Eigenschaften der Substratoberflächen vorgenommen worden. Dabei kamen oberflächensensitive Methoden wie AFM, REM, SPR und XPS zum Einsatz. Es konnte gezeigt werden, dass sich die untersuchten Moleküle wie erwartet auf den Oberflächen orientieren und dabei einen Bedeckungsgrad von etwa 60% erreichen. Der Einfluss von unterschiedlichen Vorbehandlungsmethoden konnte ebenso charakterisiert werden.
|
332 |
Study of the phase behavior of poly(n-alkyl methacrylate-b-methyl methacrylate) diblock copolymers and its influence on the wettability of polymer surfacesKeska, Renata 12 December 2006 (has links)
In this thesis detailed investigations of the phase behavior of poly(n-alkyl methacrylate-b-methyl methacrylate) diblock copolymers and its influence on the wettability of the polymer surfaces were carried out. For this investigation two polymethacrylic systems differing only in the alkyl rest of one block: poly(pentyl methacrylate-b-methyl methacrylate) and poly(propyl methacrylate-b-methyl methacrylate) have been chosen in order to prove how this substituent affects the phase behavior of whole system. The PnAlkMA-b-PMMA diblock copolymers in a wide range of molar masses, and with varied block length ratios were synthesized by living anionic polymerization. The syntheses were carried out in tetrahydrofuran (THF), at –78 °C, by using sec-buthyllithium as initiator, in the presence of lithium chloride (LiCl). Under these conditions highly syndiotactic products, rr ~ 0.82, with very narrow molar mass distribution, Mw/Mn ~ 1.1, were obtained. The phase behavior of PnAlkMA-b-PMMA diblock copolymers in bulk was investigated by means of DSC and SAXS measurements. The DSC analysis revealed that the PPMA-b-PMMA with weight fractions of PPMA, fPPMA, from 0.28 up to 0.86 showed two separate Tg’s, indicative of a phase separated system. However, by comparing the Tg’s of the diblock copolymers with the Tg’s of the corresponding homopolymers we found that in a few cases, mostly for samples with the high molar masses, they were slightly shifted. This finding pointed out the existence of two mixed phases, and hence partial miscibility between the both blocks was assumed. The SAXS patterns reflected for most diblock copolymers lamellae morphologies even in the case of very asymmetric composition, for instance with volume fraction of PPMA, 0.86 It was assumed that this behavior is caused by the chemical similarity of both blocks as well as by the differences in their molar volumes. The SAXS findings were further confirmed by the AFM measurements on the cutted “bulk” samples. From the solubility concept of Van Krevelen we obtained that the interaction parameter of PPMA-b-PMMA is rather low, 0.065, compared to the other well-known diblock copolymers. The calculated spinodals are characterized by a high asymmetry. The investigation of the phase behavior of PPMA-b-PMMA in thin films showed that the morphology as well as the topography of the thin films were strongly affected by the film thickness, when the films were prepared from a non-selective solvent (THF) onto silicon wafers. Well-recognizable nanostructures with long-range order were mainly found in thin films of diblock copolymers with high molar masses, above 100,000 g/mol, and with a high amount of PPMA. The lateral domain spacing obtained for these films from AFM corresponded well with that found in bulk. The study of the influence of the thermal as well as vapor annealing on the morphology and topography of the thin films provided additional information about the phase behavior of PPMA-b-PMMA diblock copolymers in thin films. Finally, the wettability of the investigated PPMA-b-PMMA surfaces was established by means of contact angle measurements. The measured contact angles were in most cases even on nicely nanostructured surfaces very similar to the contact angle of PPMA, indicating preferential segregation of PPMA to the film surface. Additional XPS measurements also showed an enrichment of the PPMA at the surface, independent of the morphology observed by AFM, and thereby confirmed the ADSA finding. In the next part of this work, investigations of the phase behavior of PPrMA-b-PMMA diblock copolymers were presented. In the contrary to the previous system the PPrMA-b-PMMA showed mostly a single Tg, which was further found to be depend on the weight fraction of PPrMA, fPPrMA. The SAXS data revealed that the PPrMA-b-PMMA diblock copolymers were phase separated in bulk, however the obtained scattering patterns exhibited mostly broad, not-well discernible higher-order peaks. Nevertheless, it was possible to identify the formed morphologies and depending on the volume fraction of PPrMA, hexagonally packed cylinders and lamellae were detected. The PPrMA-b-PMMA is characterized by a significantly lower value of the interaction parameter, 0.022, than the PPMA-b-PMMA system. This difference clearly reflects the weakening of the interactions between the components with decrease of the length of the alkyl side chain. The thin films of PPrMA-b-PMMA diblock copolymers appeared mostly smooth and featureless, independent of the film thickness. From the contact angle and XPS measurements we obtained, that unlike the PPMA-b-PMMA, both components were always present on the top of the surface. / In der vorliegenden Arbeit wurden Untersuchungen zum Entmischungsverhalten von Poly(n-alkylmethacrylat-b-methylmethacrylat) Diblockcopolymeren und deren Einfluss auf die Benetzbarkeit der Polymeroberflächen dargestellt. Diese Untersuchungen wurden anhand der Poly(pentylmethacrylat-b-methylmethacrylat) und Poly(propylmethacrylat-b-methylmethacrylat) durchgeführt. Die Diblockcopolymere in einem weiten Molmassenbereich, mit enger Molmassenverteilung, abgestuften Zusammensetzung wurden erfolgreich mittels anionischer Polymerization synthetisiert. Die Synthese erfolgte in THF bei (-78 °C) in Gegenwart von Lithiumchlorid. Als Initiator wurde sec. Butyllithium genutzt. Das Phasenverhalten der Diblockcopolymere im Festkörper wurde mittels DSC und SAXS untersucht. Für die meiste PPMA-b-PMMA Diblockcopolymere wurden mittels DSC zwei getrennte Tg gefunden, die aber im Vergleich zu den Tg von den entsprechenden Homopolymeren leicht verschoben waren. Es wurde also eine partielle Mischbarkeit der Blöcke festgestellt. Mittels SAXS-Untersuchungen wurde für die Mehrzahl der Diblckcopolymere in einem weiten Zusammensetzungsbereich bis zum 0.86 Volumenanteil von PPMA, eine lamellare Anordnung beobachten. Diese Befunde wurden nachfolgend mit AFM–Untersuchungen an dünnen Polymerfolien bestätigt. Das mit der Mean-Filed-Methode berechnete Phasendiagramm zeigte eine Asymmetrie, die durch die Unterschiede in den molaren Volumina des Blöckes verursacht war. Es wurde aber eine gute Übereinstimmung mit der experimentell erhaltenen Daten gefunden. Der berechnete für das System Wechselwirkungsparameter beträgt 0,065. Die AFM-Untersuchungen zum Entmischungsverhalten in dünnen Filmen haben gezeigt, dass die Topographie als auch Morphologie des Films war von der Filmdicke beeinflusst. Die Polymerfilme wurden mittels dipcoating der Si-Wafer präpariert. Dazu wurden Polymerlösungen in THF verwendet. Reguläre Nanostrukturen, deren Abstände mit dem im Festkörper gefundenen sehr gut übereinstimmten, wurden bei den Proben mit höherem Anteil von PPMA erhalten. Es wurden auch der Einfluss der Temperatur und der Dampfbehandlung auf die Morphologie und Topographie des Films untersucht. Die Benetzbarkeit der untersuchte PPMA-b-PMMA Filme wurde mit der Kontaktwinkelmessungen (ADSA) bestimmt. Als Messflüssigkeit wurde Milipore Wasser genutzt. Für die Mehrzahl der Diblockcopolymere wurden Kontaktwinkel im Bereich um 95° ermitteln, unabhängig von der Zusammensetzung der Diblockcopolymere und der vorhandenen Nanostruktur. Dies entspricht dem Kontaktwinkel von PPMA Homopolymer. Die Benetzbarkeit der PPMA-b-PMMA Filme wurde also durch die Oberflächensegregation des Niedrigenergieblocks (PPMA) bestimmt. Dies wurde danach durch zusätzliche XPS Messungen bestätigt. Im Vergleich zu PPMA-b-PMMA, die nachfolgend untersuchte PPrMA-b-PMMA Diblockcopolymere wiesen eine höhere Tendenz zur Mischbarkeit auf. Anhand der DSC–Untersuchungen wurde hier vorübergehend eine Misch-Tg gefunden. Nur bei der Probe mit symmetrischer Zusammensetzung wurden zwei getrennte Tg beobachtet. Die Streukurven von diesem System waren sehr schwach ausgeprägt. Dadurch die Indizierung der vorhandenen Morphologien war nicht eindeutlich. Der berechnete Wechselwirkungsparameter beträgt 0,022. Bei den AFM-Untersuchungen zum Entmischungsverhalten in dünnen PPrMA-b-PMMA Filmen wurden entweder keine oder sehr schwach geordnete Nanostruktur gefunden. Im Gegensatz zu dem vorherigen System, die Benetzbarkeit der PPrMA-b-PMMA Filme war durch die Zusammensetzung der Diblockcopolymere bedingt.
|
333 |
Polymer, Metal, and Ceramic Microtubes by Strain-driven Self-rollingKumar, Kamlesh 08 July 2009 (has links)
A thin polymer bilayer film was transformed into micro- and nano-tubes using strain driven self-rolling phenomena of polystyrene (PS)/poly (4-vinyl pyridine) (P4VP) film. Polymer bilayer was produced by consecutive deposition of PS and P4VP, from toluene and chloroform solutions, respectively, by dip-coating technique. The object formation proceeds from a opening in the film made by photolithography or by mechanical scratching followed by immersion of patterned sample in dodecylbenzene sulfonic acid (DBSA) solution. DBSA forms supramolecular complexes with pyridine rings of P4VP and increases the specific volume of the polymer. Since the solution is neutral to PS layer, bilayer film develops strain due to unequal swelling of polymers in solution of DBSA and hence the film bends and scrolls in order to minimize its free energy and form tubes. The length of the tubes and the direction of rolling are determined by mechanical patterning of the film. UV-photolithography is used to fabricate patterns of polymer bilayer in order to create tube in a precise manner. The kinetics of the tube formation was studied with respect to acidity of the solution and UV dose. Rate of rolling increased with the acidity of the solution. Tube diameter and rate of rolling decreased with the increase of the UV exposure time. Films with 2-dimensional gradients of layer thicknesses were prepared to study a broad range of parameters in a single experiment.
Furthermore, polymer micro-toroids and triangles were also fabricated using self-rolling approach of PS/P4VP layer. Moreover, the kinetics of toroid formation is also studied in the present work. The equilibrium dimensions of toroid are determined by the balance of the bending and the stretching energies of the film. The width of the rolled-up bilayer is larger for the films with higher values of the bending modulus and smaller values of the effective stretching modulus.
Moreover, self-rolling phenomena of polymer layer was also explored as a template to fabricate metal, ceramic and metal/ceramic hybrid tube. In order to fabricate metallic and
V
bimetallic tube, the cross-linked polymer film is capped by metallic layer. After rolling, polymer template is removed by pyrolysis resulting in pure metal microtubes. The fabrication of silica and silica/gold hybrid tubes of high aspect ratio is also demonstrated. Polydimethylsiloxane (PDMS) is used as a precursor of the silica and it is converted into silica by pyrolysis at high temperature. Entire polymer moiety is also removed at this temperature. In order to fabricate hybrid tube of silica with gold, a thin gold layer is deposited on the polymer layer by physical vapour deposition.
Self-rolling of polymer bilayers is a very convenient approach for interfacing the interior of microtubes with external electrical circuits and it can be used in particular for creating devices as micro-bubble generators exploiting electrolytic decomposition of fluids. A demonstration of microbubble generation inside the polymer tube is shown in this work.
Possibility to functionalize the hidden walls of the tubes is one of the major advantages of the self-rolling approach. One can modify the surface of the film prior to rolling by magnetron sputtering of metal and upon rolling, tube and toroids with metallized inner surface could be obtained. The tube and toroids with metallic inner surface are promising for the future research as IR-frequency range resonators. Polymer and metallic microtubes fabricated by self-rolling approach may find applications in such fields as IR-waveguiding, microfluidics, enzyme bi-reaction, chemical and biochemical sensing. The silica and silica/gold hybrid tubes have potential use in optoelectronic devices and in catalytic applications.
|
334 |
Synthesis and characterization of bis-MPA based branched polymers with thymine coreZelentsova, Elena 20 July 2009 (has links)
Synthesis and characterisation of the bis-MPA based branched materials was performed. Thymine derivative was incorporated into the polymer structure as a core moiety and an active centre for H-bonding. The formation of assemblies was investigated. / Im Rammen der Doktorarbeit wurden bis-MPA basierter dendrititsche und hochverzweigte Polymeren synthetisiert. Sie haben Thymin Derivat als Kernmolecule. Die H-Brücken zwischen Polymeren und DAPy Derivate wurden untersucht.
|
335 |
Hyperbranched Aromatic Polyesters and Their Application in Blends of Linear PolyamidesFan, Zhirong 26 August 2009 (has links)
In the last two decades, hyperbranched (hb) polymers have drawn much attention and obtained intensive research activities both from industry and academia. They are known to have unique and interesting properties which derive from their three dimensional structure and the large number of functional groups. These structural characteristics provide high possibilities for controlling functional group interactions and modifications of other polymers in blends and therefore, they are expected to result in novel materials with desired properties. Furthermore, the easy synthetic accessibility of hb polymers by one-pot synthesis is advantageous as well and allows easy scale-up of laboratory reactions. Having the characteristics as mentioned above, hb polymers are considered good candidates for blend components or melt processing modifiers. In fact, hb polymers have already been used as blend components or additives aiming for different effects. In many cases, reduced viscosity and formation of miscible blends were observed by modification of a linear matrix polymer with hb polymers. More information will be introduced in the following theoretical section. In this work two hb polyester systems based on AB2 and A2+B3 approaches were synthesized and studied. Their possible applications as additives in the blends of linear polyamides were investigated.
|
336 |
New Developments in the Crystal Chemistry of Selected Borophosphates and PhosphatesMenezes, Prashanth W. 19 October 2009 (has links)
Borophosphates are intermediate compounds of systems MxOy–B2O3–P2O5–(H2O) (M = main group or transition metal) which contain complex anionic structures built of interconnected trigonal–planar BO3 and / or BO4 and PO4 groups and their partially protonated species. The main objective of the present work was to synthesize, characterize and to study the properties of new selected 3d transition metal borophosphates. The selected four elements are scandium (Sc), iron (Fe), cobalt (Co) and nickel (Ni) due to their interesting contributions to borophosphate structural chemistry. The mild hydrothermal method was employed for the syntheses.
During the investigation of borophosphates containing alkali–metals and scandium, the following three compounds were prepared and structurally characterized:
MISc[BP2O8(OH)] (MI = K, Rb), CsSc[B2P3O11(OH)3]
The anionic partial structure of MISc[BP2O8(OH)] (MI = K, Rb) consists of the well known open–branched four–membered rings of alternating borate and phosphate tetrahedra (a loop–branched hexamer with B : P = 1 : 2). The anionic partial structure of CsSc[B2P3O11(OH)3] represents the new type of oligomer containing boron in three– and four– fold coordination (B : P = 2 : 3). This is also the first time that a BO3 group is not only linked to borate species but also to a phosphate tetrahedron. This kind of oligomer was already predicted for borates but was never observed. By this, CsSc[B2P3O11(OH)3] is a special compound with regard to the structural building principles of borates and borophosphates. The significant differences in the crystal structures of MISc[BP2O8(OH)] (MI = K, Rb) and CsSc[B2P3O11(OH)3] may be due to the higher coordination number of cesium. Thermal treatment (up to 1000 ºC) of these compounds resulted in white crystalline products containing new phases with unknown crystal structures.
Besides the discovery of alkali–metal scandium borophosphates, five new alkali metal scandium hydrogenphosphates were synthesized and structurally characterized:
Li2Sc[(PO4)(HPO4)], MISc(HPO4)2 (MI = K, Rb, Cs, NH4)
It was already predicted that open framework scandium phosphates should be isotypes of the respective indium phosphates. It was also stated that there should be a whole family of scandium hydrogenphosphates as we were able to confirm with the five novel compounds. Our systematic study reveals the structural changes of the anionic partial frameworks with increasing ionic radii of the alkali–metal ion. With respect to the M―T connections (M = six coordinated central metal atom, T = four coordinated phosphorous atom) the channel size increases from 8–membered rings in Li2Sc[(PO4)(HPO4)] to 12–membered rings in MISc(HPO4)2 (MI = K, Rb, Cs, NH4). KSc(HPO4)2 exhibits a new structure type in the family of monohydrogenphosphates with the general formula MIMIII(HPO4)2. This provides further evidence that scandium is a suitable element for the synthesis of framework structures with different channel sizes. The observation that in analogy to MISc(HPO4)2 (MI = Rb, Cs, NH4) a compound exists where the MI site is replaced by H3O+ gives rise to the hope that ion exchange properties could be of interest in this class of compounds. In addition, the possible existence of further modifications (as reported for the element–combinations RbV, NH4V, RbFe, and CsIn) shoud be investigated by thermoanalytical and X–ray methods.
The extensive studies on borophosphate containing the transition metals Fe, Co, Ni together with alkaline earth–metals (Mg, Ca, Sr, Ba) led to the preparation of 13 compounds containing the combination of two different divalent M1IIM2II ions:
CaM2II[BP2O7(OH)3] (M2II = Fe, Ni), BaM2II[BP2O8(OH)] (M2II = Fe, Co),
SrFe[BP2O8(OH)2], CaCo(H2O)[BP2O8(OH)]•H2O,
M1II0.5M2II(H2O)2[BP2O8]•H2O (M1II0.5 = Ca, Sr, Ba; M2II = Fe, Co, Ni)
The anionic partial structure of CaM2II[BP2O7(OH)3] (M2II = Fe, Ni) consists of a tetrahedral triple [BP2O7(OH)3]4-, built from a central (HO)2BO2 tetrahedron sharing common vertices with two (H0.5)OPO3 tetrahedra. The complex anions in the crystal structure of BaM2II[BP2O8(OH)] (M2II = Fe, Co) comprises open–branched four–membered rings, [B2P4O16(OH)2]8-, which are formed by alternating (HO)BO3 and PO4 tetrahedra sharing common corners with two additional PO4 branches. The interconnection of these complex anions with M2II coordination octahedra (M2II = Fe, Co, Ni) by sharing common corners results in overall three–dimensional frameworks which contain channels filled with the M1II ions (M1II = Ca, Ba). The anionic partial structure of SrFe[BP2O8(OH)2] is built from a central (HO)2BO2 tetrahedron sharing common vertices with two PO4 tetrahedra. Surprisingly, SrFe[BP2O8(OH)2] represents the first example in the structural chemistry of borophosphates where the charge of the anionic partial structure is balanced by a divalent and a trivalent species (MIIMIII). Although being a member of the M1IIM2II[BP2O8(OH)] family the crystal structure of CaCo(H2O)[BP2O8(OH)]•H2O is different. Interestingly, this is the first case in the borophosphate structural chemistry where dimers of cobalt coordination octahedra together with borophosphate oligomers form a (two–dimensional) layered structure.
The helical borophosphates M1II0.5M2II(H2O)2[BP2O8]•H2O (M1II0.5 = Ca, Sr, Ba; M2II = Fe, Co, Ni) contain one–dimensional infinite loop–branched borophosphate helices built of alternatively distorted borate and phosphate tetrahedra. Up to now, the group of compounds with 1[BP2O8]3– helical chain anions has been synthesized only in combination with different cations MIMII and MIII (MI = Li, Na, K; MII = Mg, Mn, Fe, Co, Ni, Zn; MIII = Sc, In, Fe). The systematic investigation on helical borophosphates of transition metals (Fe, Co, Ni) and alkaline–earth metals showed that it is also possible to accommodate divalent metal cations within the structure without disturbing the anionic partial structure. It was not possible to find the completely ordered structural model for the compounds M1II0.5M2II(H2O)2[BP2O8]•H2O (M1II0.5 = Ca, Sr, Ba; M2II = Co) but the substructure presented shows good agreement with the ordered known helical borophosphate compounds. Interestingly, it was also possible to judge the “kind of superstructure” against the crystal morphology.
Syntheses of one of the few examples of borophosphates containing layered anionic partial structures (63 net topology) containing transition metal cations (Fe, Co, Ni) was realized with 6 isotypic compounds:
MII(H2O)2[B2P2O8(OH)2]•H2O (MII = Fe, Co, Ni, Ni0.5Co0.5, Ni0.8Zn0.2, Ni0.5Mg0.5)
The compounds MII(H2O)2[B2P2O8(OH)2]•H2O (MII = Fe, Co, Ni) adopt the structure type of Mg(H2O)2[B2P2O8(OH)2]•H2O characterized by a two–dimensional borophosphate anion. Substitution on the transition metal sites was shown to be possible (Ni0.5Co0.5) realized for this structure type. With the synthesis of Ni0.8Zn0.2(H2O)2[B2P2O8(OH)2]•H2O and Ni0.5Mg0.5(H2O)2[B2P2O8(OH)2]•H2O it was also proved that magnetically diluted samples can be prepared in analogy to Mg1–x Cox(H2O)2[B2P2O8(OH)2]•H2O (x = 0.25). The thermal stability of these compounds is very similar with a slight shift to higher decomposition temperatures for the Ni0.5Mg0.5(H2O)2[B2P2O8(OH)2]•H2O. In contrast to other borophosphates such as MIMII(H2O)2[BP2O8]∙H2O and MIII(H2O)2[BP2O8]∙H2O, it is not possible to rehydrate partially dehydrated samples even though the crystal structure may suggest this property. This shows that the aqua–ligands significantly contribute to the stability of the structure. The magnetic behavior of MII(H2O)2[B2P2O8(OH)2]•H2O (MII = Fe, Ni) corresponds well with separated 3d ions without strong magnetic interactions down to 1.8 K. Quite surprising was the remarkable change in the crystal habit that was observed during the synthesis upon addition of alkali–metal cations. Syntheses with the absence of alkali–metals lead to a change in the crystal habit by reducing of the number of faces in direction of the more simple prismatic morphology.
Our research on borophosphates containing mixed transition metals led to the preparation of a borophosphate and a phosphate:
FeCo(H2O)[BP3O9(OH)4], Fe1.3Co0.7[P2O7]∙2H2O
The anionic partial structure of FeCo(H2O)[BP3O9(OH)4] is an open–branched tetramer built from (HO)BO3 sharing common O–corners with one (HO)PO3, one (HO)2PO2 and one PO4 group. The crystal structure is an isotype to Mg2(H2O)[BP3O9(OH)4]. Fe1.3Co0.7[P2O7]∙2H2O contains the diphosphate composed of two corner–sharing tetrahedra (isotypic to MII[X2O7]∙2H2O (MII = Mg, Mn, Co, Fe and X = P, As). However, the crystal structure of both, FeCo(H2O)[BP3O9(OH)4] and Fe1.3Co0.7[P2O7]∙2H2O, contains octahedral zigzag chains, which are interconnected by the respective tetrahedral anions. The octahedral chains in these crystal structures are closely related to the octahedral arrangements in MIIH2P2O7 (MII = Co, Ni) which exhibit a field-induced metamagnetic behavior from an antiferromagnetic state to a ferromagnetic state and to MII[BPO4(OH)2] (MII = Mn, Fe, Co) which indicate a low-dimensional antiferromagnetic correlation of the MII ions by dominant exchange interactions within the one–dimensional octahedral chain structure. Therefore, due to the similar structural features, FeCo(H2O)[BP3O9(OH)4] and Fe1.3Co0.7[P2O7]∙2H2O may exhibit interesting magnetic properties. Thermal investigation revealed that both compounds are stable until 300 ºC and transform into pyrophosphates at higher temperatures. Fe1.3Co0.7[P2O7]∙2H2O represents the first hydrated mixed divalent cation diphosphate.
|
337 |
Biomimetic Growth and Morphology Control of Calcium OxalatesThomas, Annu 16 November 2009 (has links)
With respect to the principles of biomineralization, it is of interest to study the crystallization of calcium oxalates under various experimental conditions. Calcium oxalates play decisive roles as biominerals in plants and as pathological “urinary/kidney stones” in vertebrates.
Calcium oxalate exists in three different hydration states; calcium oxalate monohydrate (COM, monoclinic, a = 6.290(1)Å, b = 14.583(1)Å, c = 10.116(1)Å, β = 109.46°, P21/c), calcium oxalate dihydrate (COD, tetragonal, a = b = 12.371(3)Å, c = 7.357(2)Å, α = β = γ = 90°, I4/m) and calcium oxalate trihydrate (COT, triclinic, a = 6.11(1)Å, b = 7.167(2)Å, c = 8.457(2)Å, α = 76.5(2)°, β = 70.35(2)°, γ = 70.62(2)°, P ). Monoclinic COM and tetragonal COD are the most common phyto-crystals and the main constituents of kidney and urinary stones. The occurrence of calcium oxalates in plants represents a useful biogenesis (protection against herbivores) unlike the devastating occurrence in renal tubules. Therefore, biomineralization can be physiological or pathological. A systematic investigation of the morphological evolution of calcium oxalates in the presence of organic components is essential for understanding the mechanism of “pathological biomineralization”.
In order to understand the pathological biomineralization of uroliths, it is necessary grow calcium oxalates comparable in morphology under similar growth conditions. The formation of calcium oxalate stones within a gelatinous state of proteins, polysaccharides, lipids and other biomacromolecules under a flow of supersaturated urine supports the fact that an “organic” gel model can simulate the process of urinary stone formation under in vitro conditions. Furthermore, synthetic polymers with precisely known functions and solution behaviours are better choices to understand the interaction of acidic proteins with calcium oxalates. Therefore, as a first step to unravel the complex pathology of uro/nephro lithiasis, we started to examine the structure and morphology of calcium oxalates crystallized in the presence of organic additives such as the sodium salt of polyacrylic acid (PAA) as well as agar gel. The influence of initial calcium oxalate concentration, pH and concentration of the additives on the formation of hydration states of calcium oxalates have been investigated along with the stated general methods.
Apart from the three hydrated forms, calcium oxalate exists also in the anhydrous form (COA). Although three modifications of COA (α, β and γ) are reported in the literatures, the crystal structures and phase transformations were controversially discussed. We have been able to reveal the crystal structure of the β-modification of the anhydrous calcium oxalate by a combination of atomistic simulations and Rietveld refinements on the basis of powder X-ray diffraction pattern. β-COA belongs to the monoclinic system with unit cell parameters, a = 6.1644(3)Å, b = 7.3623(2)Å, c = 9.5371(5)Å, β = 90.24(2)°, P2/m (No. 10). The dehydration of COM was mimicked in silico to receive an initial model of the crystal structure of anhydrous calcium oxalate. This general approach may also be accessible for other decomposition processes ending up with crystalline powders of unknown crystal structure. No evidence for transformations from or to the α- or γ- modifications was found during our investigations.
The growth pattern of COD crystals precipitated from aqueous solutions in the presence of PAA is clearly dependent on the concentration of PAA. By increasing the concentration of PAA, the shape of COD has been found to change from tetragonal bi-pyramids with dominant (101) pyramidal faces to tetragonal prisms with dominant (100) prism faces and finally to dumbbells. At still higher PAA concentrations, the morphology is reverted back to rod-like tetragonal prisms. Apart from these experiments, the interaction of PAA with (100) and (101) crystal faces of COD was explored with the aid of atomistic simulations. The simulation confirmed that during the development of the aggregates, strong interactions of PAA with the (100) faces take over control of morphologies. Our investigations show that the inner architecture of all the morphological varieties of COD was found to be dominated by an inner “core” consisting of thin elongated crystallites together with incorporated PAA and an outer “shell” formed as a consequence of secondary nucleation processes. We propose that for all types of COD aggregates, relative proportion of calcium oxalate and PAA dictates the shape and formation of nanometer sized crystallites which then aggregate and align to form the core. Such cores enriched with PAA may act as the sites for secondary nucleation events of calcium oxalate crystallites which then cover the core like a shell.
In vitro experimental models for the growth of calcium oxalates can give valuable information on the growth and aggregation of urinary stones. Therefore, the “double diffusion technique” in agar gel matrix has been used for the biomimetic growth of calcium oxalate (COM) stones. A great variety of morphological forms of COM are produced in agar gel matrices (2 wt.-% agar gel of pH 8.5) ranging from platy crystallites to dumbbells and spherulites. The COM dumbbells and spherulites are assumed to be formed by the aggregation of smaller crystallites as a consequence of increased supersaturation inside the gel. Moreover, an increase of the pH value of the agar gel has been found to suppress the growth of COM and favours the growth of COD. The morphology of COD crystals grown in 2 wt.-% agar gel of pH 11.5 includes tetragonal prisms and dumbbells.
The system calcium oxalate/ PAA/ H2O is a suitable model system for the investigation of principles of biomineral growth (shape development) in general. Our results demonstrate that the double diffusion technique in agar gel is a convenient route to grow calcium oxalate aggregates showing close resemblance to biogenic calculi and to study their ontogeny.
|
338 |
Zum Komplexbildungsverhalten ausgewählter Actiniden (U, Np, Cm) mit mikrobiellen BioligandenGlorius, Maja 26 January 2010 (has links)
Die Endlagerung von radioaktivem Abfall ist eine der vordringlichsten Aufgaben auf dem Gebiet der Kerntechnik. Als Teil der Sicherheitsanforderungen steht dabei der Schutz von Mensch und Umwelt vor den Gefahren der radioaktiven Stoffe selbst im Falle einer Freisetzung dieser Stoffe aus dem Endlager im Vordergrund. Als Basis für Langzeitsicherheitsanalysen dienen Modellierungen. Für diese sind umfassende Kenntnisse der chemisch-physikalischen Effekte und Einflüsse, die eine Mobilisierung und den Transport der Actiniden bewirken können, erforderlich. Diese Arbeit war ein eigenständiger Teil eines Projektes, welches sich mit der Aufklärung des Einflusses von Mikroorganismen auf die Ausbreitung von Actiniden bei einer Freisetzung dieser aus dem Endlager beschäftigt. Dabei wurde der Einfluss von mikrobiell produzierten Substanzen auf die Mobilisierung ausgewählter Actiniden untersucht. Die in diesem Projekt untersuchten mikrobiell produzierten Substanzen, sogenannte Bioliganden, wurden von Bakterien des Genus Pseudomonas unter speziellen Bedingungen produziert. Die von den Pseudomonaden freigesetzten Bioliganden, hier Siderophore vom Pyoverdin-Typ, haben ein hohes Potential, Metalle, insbesondere Eisen(III), zu komplexieren und so zu transportieren. Es wurde untersucht, in welcher Weise und unter welchen Bedingungen diese Bioliganden in der Lage sind, auch radioaktive Schadstoffe zu komplexieren und damit zu mobilisieren. Für die Untersuchungen wurden die α-strahlenden Actiniden Uran, Curium und Neptunium ausgewählt, weil diese auf Grund ihrer Langlebigkeit und Radiotoxizität von besonderem Interesse sind.
Diese Arbeit beschäftigte sich mit der Wechselwirkung der Actiniden U(VI), Np(V) und Cm(III) mit Modellliganden, die die Funktionalitäten der Pyoverdine simulieren. Für die Metallbindung der Pyoverdine sind die Katecholgruppe des Chromophors und die funktionellen Gruppen der Peptidkette (Hydroxamsäuregruppen und α-Hydroxysäurereste) verantwortlich. Für die Simulation der Hydroxamsäuregruppen kamen dabei die Monohydroxamate Salicylhydroxamsäure (SHA) und Benzohydroxamsäure (BHA) und das natürliche Trihydroxamat Desferrioxamin B (DFO) zum Einsatz und für die Katecholgruppe das 6-Hydroxychinolin (6HQ) und 2,3-Dihydroxynaphthalin (NAP). Als Vergleichsligand wurde außerdem Benzoesäure (BA) untersucht. Für die Bestimmung der Stabilitätskonstanten zur Einschätzung der Stärke der gebildeten Komplexe, die Aufklärung der Struktur der Actinid-Ligand-Verbindungen und die Verfolgung der Änderung der Speziation der Actiniden vor und nach der Wechselwirkung mit den Modellliganden kamen verschiedene spektroskopische Verfahren wie Absorptionsspektroskopie, Laserfluoreszenzspektroskopie,
Röntgenabsorptionsspektroskopie und Schwingungsspektroskopie zum Einsatz. Außerdem wurden erstmals theoretische Modellierungen zur Aufklärung der Struktur der Actinid-Modellligand-Komplexe durchgeführt.
Die Ziele dieser Arbeit waren also die spektroskopische Charakterisierung und Bestimmung der Speziation und
Komplexbildungskonstanten sowohl der ausgewählten Modellliganden als auch der gebildeten Actinid-Modellligand-Komplexe, die Aufklärung möglicher Strukturen der Komplexe sowie ein Vergleich der Ergebnisse mit denen der Pyoverdine.
Der Vergleich der Stabilitätskonstanten der untersuchten Liganden mit den drei Actiniden U(VI), Cm(III) und Np(V) ergab im Wesentlichen folgende Reihenfolge der Komplexstärke:
PYO ≥ DFO > NAP > 6HQ > SHA ≥ BHA > BA.
Benzoesäure (hier wurde nur die Komplexbildung mit U(VI) untersucht) besitzt als einziger Ligand eine Carboxylfunktionalität und weist mit 103 die geringste Stabilitätskonstante auf. Die beiden Monohydroxamate SHA und BHA bilden mit allen drei Actiniden ähnlich starke 1:1-Komplexe. Bei den 1:2-Komplexen besitzt SHA mit Cm(III) und Np(V) etwas höhere Stabilitätskonstanten als BHA, wahrscheinlich verursacht durch einen stabilisierenden Einfluss der zusätzlichen phenolischen OH-Gruppe. Dieser Trend wurde auch in den
theoretischen Modellierungen für die U(VI)-Komplexe beobachtet. Die natürlichen Siderophore DFO und PYO bilden die stärksten Komplexe mit den Actiniden (Stabilitätskonstanten von 1012 bis 1034). Dies liegt in der Struktur und der hohen Anzahl an funktionellen Gruppen begründet; DFO besitzt drei Hydroxamatgruppen, das Pyoverdinmolekül neben den Hydroxamatgruppen noch die Katecholgruppen der Chromophorfunktionalität. Die Modellliganden für die Chromophorfunktionalität, NAP und 6HQ, bilden stärkere Komplexe als die Monohydroxamate SHA und BHA, aber schwächere Komplexe als DFO und PYO. Daraus lässt sich schlussfolgern, dass die Chromophorfunktionalität eine wichtige Rolle bei der Anbindung der Actiniden an die Pyoverdine spielt.
Der Vergleich der Stabilitätskonstanten der Komplexe der Liganden SHA, BHA und 6HQ mit den drei untersuchten Actiniden U(VI), Cm(III) und Np(V) untereinander zeigte, dass die Stärke der Komplexe von U(VI) über Cm(III) zu Np(V) abnimmt. Der Grund dafür liegt in den unterschiedlichen Ladungsdichten der Actinidionen. Während das UO2
2+-Ion mit einer Koordinationszahl von 5 und einem Ionenradius von ~ 0.6 eine effektive Ladung von + 3.3 besitzt, hat das Cm3+-Ion eine effektive Ladung von + 2.6 und das NpO2+-Ion von + 2.3. Damit besitzt das NpO2+-Ion die geringste Ladungsdichte der untersuchten Actinidionen und bildet damit auch die schwächsten Komplexe mit den niedrigsten Stabilitätskonstanten. Die Stärke der Komplexe der Liganden NAP, DFO und PYO nimmt von Cm(III) über U(VI) zu Np(V) ab. Obwohl Cm(III) eine geringere effektive Ladung als U(VI) hat, bildet es stärkere Komplexe als U(VI). Eventuell sind dafür strukturelle Behinderungen der Koordination durch die lineare O=U=O Einheit verantwortlich.
Die Struktur der wässrigen U(VI)-Komplexe wurde mittels EXAFS-Spektroskopie und ATRFTIR-Spektroskopie untersucht.
Aus den EXAFS-Spektren ließ sich schließen, dass die Koordination des Uranylions an die Hydroxamsäuregruppen der Liganden SHA, BHA und DFO eine Verkürzung des Abstandes der äquatorialen Sauerstoffatome zur Folge hat. Im Gegensatz dazu resultiert eine Koordination des Uranylions an die Carboxylgruppe des Liganden BA in einer Verlängerung des U-Oäq Abstandes. Die Ergebnisse des NAP als Modellligand für die Chromophorfunktionalität des Pyoverdins und die Ergebnisse des Pyoverdins selbst zeigten, dass das Uranylion mit großer Wahrscheinlichkeit an die katecholischen OH-Gruppen der
Chromophorfunktionalität des Pyoverdinmoleküls gebunden ist.
In den Spektren der ATR-FTIR-Spektroskopie ist besonders der Bereich um die Schwingungsbande des Uranylions (961 cm-1) für die Beobachtung der Komplexbildung interessant. Dabei zeigte sich im U(VI)-BHA- und U(VI)-SHA-System eine Mischung aus zwei Komplexen mit 1:1- und 1:2-Stöchiometrie, die auch durch Speziationsrechnungen
nachgewiesen werden konnten. Außerdem ließ sich anhand der Schwingungsbanden des Liganden feststellen, dass die Hydroxamsäuregruppe von SHA und BHA während der Komplexierung deprotoniert und direkt an der Komplexbildung beteiligt ist. Im Falle von
SHA konnte weiterhin nachgewiesen werden, dass die phenolische OH-Gruppe bei den untersuchten pH-Werten nicht deprotoniert ist. Die pH-abhängigen Spektren des U(VI)-DFOSystems zeigten bei pH 3 die Bildung eines 1:1-Komplexes ähnlich dem der Monohydroxamate, bei Erhöhung des pH-Wertes bis pH 4 dann die Bildung eines 1:1-
Komplexes, bei dem das Uranylion an zwei Hydroxamsäuregruppen gebunden ist. Dies stützt die Annahme einer 112-Stöchiometrie des Komplexes, die bei den anderen verwendeten experimentellen Methoden getätigt wurde.
Durch Ausfällung aus wässrigen U(VI)-SHA- und U(VI)-BHA-Lösungen wurden Feststoffe der U(VI)-Komplexe hergestellt. Die Struktur dieser ausgefällten, pulverförmigen Feststoffe wurde mittels EXAFS, XRD und FTIR untersucht. Die Untersuchung der ausgefällten Feststoffe ergab, dass die Feststoffkomplexe mit sehr hoher Wahrscheinlichkeit den in
Lösung gefundenen Komplexen mit 1:2-Stöchiometrie entsprechen. Der Vergleich der Uran und Kohlenstoffgehalte der Feststoffe mit den in der Literatur beschriebenen Uranverbindungen (zur gravimetrischen Bestimmung von Urangehalten) zeigte übereinstimmende Werte. In den FTIR-Messungen wurden Banden bei 916 cm-1 beobachtet,
die denen in der Lösung dem 1:2-Komplex zugeordneten Banden entsprechen. Die Ergebnisse der EXAFS-Messungen deuten auf eine unterschiedliche Nahordnung des U(VI) im Feststoff und in der Lösung hin. So ergab der Vergleich der Strukturparameter der Hydroxamat-
Feststoffe mit den U(VI)-Hydroxamat-Komplexen in Lösung deutliche Unterschiede zwischen den Feststoffkomplexen und denen in Lösung. So ist in wässriger Lösung der Abstand der äquatorialen Sauerstoffatome mit 2.41 Å signifikant kürzer als der der
Feststoffkomplexe mit 2.47 Å (SHA) und 2.44 Å (BHA). Die röntgendiffraktogrammischen Messungen der Festphasen ergaben reflexreiche Spektren mit signifikanten Peaks, die sich allerdings keinen bekannten U(VI)-Festphasen zuordnen ließen.
In einer Kooperation mit dem Institut für Theoretische Chemie der Universität zu Köln wurden für die 1:1- und 1:2-Komplexe der wässrigen U(VI)-SHA-, U(VI)-BHA- und U(VI)-BA-Systeme erstmals theoretische Modellierungen durchgeführt. Dabei wurden die
Strukturen der Komplexe sowohl in der Gasphase als auch unter Berücksichtigung der Solvatation optimiert und die relativen Stabilitäten und Anregungsspektren berechnet. Die mit DFT berechneten Bindungsenergien bestätigen die experimentell anhand der
Stabilitätskonstanten log β ermittelte Reihenfolge der Komplexstabilitäten (SHA ≥ BHA > BA). Außerdem zeigen die höheren Bindungsenergien der 1:2-Komplexe, dass diese stabiler sind als die 1:1-Komplexe. Dies lässt sich auch anhand der experimentell
ermittelten Stabilitätskonstanten nachweisen. Die Maxima der mit TD-DFT berechneten Anregungsspektren weichen um 0.4 ± 0.2 eV von
den experimentellen UV-Vis Spektren ab. Dies zeigt die gute Übereinstimmung der berechneten Anregungsspektren mit den gemessenen UV-Vis Spektren. Für den 1:1-Komplex des U(VI)-SHA-Systems konnte mit Hilfe der theoretischen Modellierung die strukturelle Anbindung des Uranylions an die Hydroxamsäuregruppe
aufgeklärt werden. Der Vergleich der berechneten Strukturen, Bindungsenergien, Bindungslängen und Anregungsspektren der beiden möglichen Anbindungsmodi [O,O] und [N,O’] zeigte deutlich, dass das Uranylion bevorzugt über die beiden Sauerstoffatome der Hydroxamsäuregruppe, also den [O,O]-Modus, gebunden wird. Die Methode der DFT konnte also dazu beitragen, Defizite in der experimentellen Aufklärung der Komplexstruktur im Fall des U(VI)-SHA-Systems zu beheben.
Die Modellliganden und deren Komplexe mit U(VI), Cm(III) und Np(V) wurden zum größten Teil erstmals spektroskopisch charakterisiert sowie deren bisher weitgehend unbekannten Stabilitätskonstanten bestimmt. Außerdem konnte die Struktur der U(VI)-Hydroxamat-
Komplexe mit Hilfe der ATR-FTIR-Spektroskopie und der theoretischen Modellierung aufgeklärt werden. Im Vergleich der Ergebnisse der Modellliganden mit denen der Pyoverdine konnte festgestellt werden, dass die Katecholfunktionalität der Pyoverdine eine große Rolle bei der Komplexierung mit den Actiniden spielen wird. Weiterhin ließen sich aus
den Ergebnissen Schlussfolgerungen zur Stärke der gebildeten Actinid-Modellligand- und Actinid-Pyoverdin-Komplexe ziehen. Die Pyoverdine bildeten mit U(VI) Komplexe mit Stabilitätskonstanten bis 1030, mit Cm(III) bis 1032 und mit Np(V) bis 1020. Die wichtigsten, in höheren Konzentrationen vorkommenden anorganischen Komplexbildner in natürlichen Wässern sind das Hydroxidion OH- sowie das Carbonation CO32-. Diese besitzen eine hohe Komplexierungsfähigkeit und bilden mit den drei Actiniden U(VI), Cm(III) und Np(V) Komplexe mit Stabilitätskonstanten von 102 bis 1020. Der Vergleich der Konstanten von OH und CO32- mit denen der organischen, mikrobiellen Pyoverdin-Liganden zeigt, dass die Pyoverdine ähnlich starke bzw. teilweise stärkere Komplexe mit den Actiniden bilden als die anorganischen Komplexbildner. Daraus lässt sich ableiten, dass die Pyoverdine selbst in niedrigeren Konzentrationen ein hohes Potential besitzen, Actiniden in natürlichen Wässern zu binden und damit zu transportieren. Die untersuchten Bioliganden sind also in der Lage, bei Anwesenheit in der Natur in bestimmten Konzentrationen im Grundwasser Actiniden, z.B.
durch Herauslösen aus Festphasen, zu mobilisieren. Damit können solche Bioliganden das Verhalten der Actiniden in der Umwelt entscheidend beeinflussen. Die Ergebnisse dieser Arbeit tragen dazu bei, den Einfluss der mikrobiellen Liganden auf die Mobilisierung und Ausbreitung der Actiniden besser einschätzen zu können. Damit können
die Ergebnisse zur Quantifizierung des Mobilisierungseffekts der Actiniden durch freigesetzte Bioliganden im Nahfeld genutzt werden. / One of the urgent tasks in the field of nuclear technology is the final storage of radioactive substances. As a part of the safety requirements the protection of humans and the environment from the danger of radioactive substances in case of the release from the final storage is
essential. For performing long-term safety calculations the detailed understanding of the physico-chemical effects and influences which cause the mobilisation and transport of actinides are necessary. The presented work was a discrete part of a project, which was focused on the clarification of the influence of microorganisms on the migration of actinides in case of the release of actinides from a final storage. The influence of microbial produced substances on the mobilisation of selected actinides was studied thereby. The microbial produced substances studied in this project were synthesized by bacteria from the Pseudomonas genus under special conditions. Fluorescent Pseudomonads secrete bacterial pyoverdin-type siderophores with a high potential to complex and transport metals, especially iron(III). The aim of the project was to determine how and under which conditions the bioligands are able to complex also radioactive substances and therefore to transport them. For this work the alpha-emitting actinides uranium, curium and neptunium were chosen because their long-life cycle and their radiotoxicity are a matter of particular interest.
This work dealed with the interaction of the actinides U(VI), Np(V) and Cm(III) with model ligands simulating the functionality of the pyoverdins. The functional groups that participate in the metal binding of the pyoverdins are the catechol group of the chromophore and the
ligand sites in the peptide chain, i.e. the hydroxamate groups and the α-hydroxy acid moieties. For the simulation of the hydroxamate functionality the monohydroxamates
salicylhydroxamic acid (SHA) and benzohydroxamic acid (BHA) and the natural trihydroxamate desferrioxamine B (DFO) and for the simulation of the catechol groups 6-hydroxyquinoline (6HQ) and 2,3-dihydroxynaphthalene (NAP) were used. A further ligand with carboxyl functionality, benzoic acid (BA), was used as a comparison. Absorption spectroscopy, laser fluorescence spectroscopy, X-ray absorption spectroscopy and vibrational spectroscopy were applied for the determination of the stability constants to assess the strength of the formed actinide-model ligand-complexes, for the clarification of the structures of the formed complexes and to observe the variation of the speciation of the actinides during the interaction with the ligands. Furthermore, for the first time density functional theory (DFT) calculations were performed to determine the molecular structure of the actinide-modelligand-complexes. Thus, the objectives of this work were the determination of the spectroscopic properties, speciation and stability constants of the model ligands and the formed actinide-model ligand-complexes, the clarification of the complex structures and a
comparison of the results with those of the pyoverdins.
The comparison of the stability constants of the studied ligands with the three actinides U(VI), Cm(III) and Np(V) systems results mainly in the following order of complex strength:
PYO ≥ DFO > NAP > 6HQ > SHA ≥ BHA > BA.
Benzoic acid, the ligand with the carboxyl functionality, has the lowest stability constant of 103. Both monohydroxamates, SHA and BHA, form 1:1 complexes with similar stability. The stability constants of the 1:2 complexes of SHA with Cm(III) and Np(V) are slightly higher than those of BHA, which is probably caused by a stabilizing effect of the additional phenolic OH-group of SHA. This behaviour was also found in the theoretical calculations of the U(VI)-complexes. The natural siderophores DFO and PYO have the highest stability constants with
U(VI) and form the strongest complexes (constants from 1012 to 1034). The reason therefore is the structure and high number of functional groups of these ligands; DFO has three hydroxamate groups, the pyoverdin molecule has the catechol groups of the chromophore functionality in addition to the hydroxamate groups. The model ligands for the chromophore functionality, NAP and 6HQ, form stronger complexes than SHA and BHA, but weaker complexes than DFO and PYO. From this it can be reasoned that the chromophore
functionality probably plays an important role for the coordination of the actinides to the pyoverdins.
The comparison of the stability constants of the complexes of the ligands SHA, BHA and 6HQ with the studied actinides U(VI), Cm(III) and Np(V) shows that the strength of the complex formation decreases from U(VI) via Cm(III) to Np(V). The reason therefore is the different charge density of the actinide ions. The UO22+-ion has an effective charge of + 3.3 (with a coordination number of 5 and an ionic radius of ~ 0.6), the Cm3+-ion of + 2.6 and the NpO2+-ion of + 2.3. Therefore, the neptunyl ion has the lowest charge density of the studied actinide ions and on account of this it forms the weakest complexes with the lowest stability constants. The strength of the complex formation of the ligands NAP, DFO and PYO decreases from Cm(III) via U(VI) to Np(V). Cm(III) forms stronger complexes than U(VI) although Cm(III) has a lower effective charge. The reason therefore could be a possible
structural hampering of the coordination through the linear O=U=O unit.
The structure of the aqueous U(VI)-complexes was studied using EXAFS spectroscopy and FTIR spectroscopy.
From the results of the EXAFS spectra one can conclude that the coordination of the uranyl ion to the hydroxamic acid groups of the SHA, BHA and DFO ligands results in a shortening of the distance of the equatorial oxygen atoms. In contrast to this the coordination of the
uranyl ion to the carboxyl group of BA yields in a longer U-Oeq bond length. From the findings of the EXAFS studies with NAP and pyoverdin one can conclude a strong affinity of U(VI) to the catechol functionality of the pyoverdin molecule. For the observation of the complexation in the ATR-FTIR spectra the region around the vibration band of the uranyl ion (916 cm-1) is interesting to observe. In the spectra of the
U(VI)-BHA- and U(VI)-SHA-system a mixture of two complexes with 1:1 and 1:2 stoichiometry was observed, which was also existing in the speciation. Furthermore, on the basis of the vibration bands of the ligands it could be ascertained that the hydroxamate groups of SHA and BHA are deprotonated and directly involved in the complexation. Also, in case of SHA it could be verified that the phenolic OH-group is protonated at the investigated pH values. At pH 3 the pH dependent spectra of the U(VI)-DFO-system showed the formation of a 1:1 complex similar to those of the monohydroxamates. With increasing pH up to 4 the formation of a 1:1 complex was observed, in which the uranyl ion is bound to two hydroxamic acid groups. This underlines the assumption that the complex had a 112-stoichiometry, which was concluded on the basis of the other used experimental methods.
Solid phases of U(VI) complexes were assembled by precipitation from the aqueous U(VI)-SHA and U(VI)-BHA solutions. The structure of these powder solids was analyzed using EXAFS, XRD and FTIR. The analysis of the solid phases showed that the solid complexes are most likely consistent with the complexes in aqueous solution with 1:2 stoichiometrie. The comparison of the uranium and carbon percentage of the solids with those of the uranium compounds described in the literature (for the gravimetric estimation of uranium contents) results in analogue values. In the FTIR spectra of the solids vibration bands at 916 cm-1 were observed according to the bands of the 1:2 complexes in aqueous solution. The results of the EXAFS measurements indicated a different short-range order of the U(VI) in solid phases and solutions. The comparison of the structural parameters of the solid phases with those of the aqueous U(VI)-hydroxamate complex species points to strong differences. Thus, in aqueous solution the distance of the equatorial oxygen atoms of 2.41 Å is significant shorter than those
of the solid complexes with 2.47 Å (SHA) and 2.44 Å (BHA). The XRD measurements showed spectra high in reflexes and with significant peaks which could not be assigned to known U(VI) solid phases.
In a cooperation with the Institute of Theoretical Chemistry at the University of Cologne density functional theory (DFT) calculations were performed to determine the molecular structure of 1:1 and 1:2 U(VI)-complexes with SHA, BHA and BA. The precise molecular
structures of the complexes in gas phase have been calculated as well as the relative stabilities and the time-dependent DFT excitation spectra with consideration of the solvation effects. The relative stabilities calculated with DFT confirm the order of strength of the complexes determined using the stability constants log β (SHA ≥ BHA > BA). Furthermore, the higher binding energies of the 1:2 complexes point to a higher complex stability of these complexes in comparison to the corresponding 1:1 complexes. This could be also demonstrated by means of the stability constants determined by the experimental studies. The peak maxima of the TD-DFT excitation spectra deviate at 0.4 ± 0.2 eV from the absorption maxima of the experimental UV-vis spectra. Thus, calculated and experimental spectra show a good qualitative agreement. For the 1:1 complex of the U(VI)-SHA-system the structurally coordination of the uranium ion to the hydroxamate group could be clarified with the help of the theoretical modelling.
The comparison of the calculated structures, binding energies, bond lengths and excitation spectra of the two possible coordination modes [O,O] and [N,O’] showed clearly that the uranyl ion is bound preferable to the two oxygen atoms of the hydroxamate group ([O,O]-mode). Therefore, the method of DFT could contribute to eliminate shortcomings in the experimental determination of the complex structure in case of the U(VI)-SHA-system.
The model ligands and their complexes with U(VI), Cm(III) and Np(V) were characterized spectroscopically and their widely unknown stability constants were determined for the first time. Furthermore, the structures of the U(VI)-hydroxamate-complexes were clarified using
ATR-FTIR spectroscopy and theoretical calculations. The comparison of the results of the model ligands with those of the pyoverdins showed that the chromophore functionality of the pyoverdins probably plays an important role for the coordination of the actinides to the pyoverdins. Furthermore, conclusions to the strength of the formed actinide-model ligandand actinide-pyoverdin-complexes could be drawn from those results. The pyoverdins formed U(VI)-complexes with stability constants up to 1030, Cm(III)-complexes with constants up to 1032 and Np(V)-complexes with values up to 1020. The hydroxide ion OH- and the carbonato ion CO32- are the most important inorganic complexing agents in natural aquatic systems. They are highly concentrated and have great complexing ability. With the three studied actinides U(VI), Cm(III) and Np(V) complexes with stability constants from 102 to 1020 were formed. The comparison of the constants of OH- and CO3
2- with those of the organic microbial ligands showed that the pyoverdins complexes the actinides with similar and particularly higher strength than the inorganic complexing agents. Thus, it appears that the pyoverdins have a high potential to bind actinides and transport them in natural aquatic systems even though the pyoverdins exist in lower concentrations. Therefore, the studied bioligands are able to mobilize the actinides in natural aquatic systems, for example through
dissolving them from solid phases, if they are present in the nature in specific concentrations. So, such bioligands can essentially influence the behaviour of actinides in the environment. The results of this work contribute to a better understanding and assessment of the influence
of the microbial ligands to the mobilisation and migration of the radionuclides. The outcomes could be used to quantify the actinide-mobilising effect of the bioligands, which are released, for example, in the vicinity of a nuclear waste disposal site.
|
339 |
Polyelectrolyte nanostructures formed in the moving contact line: fabrication, characterization and application: Polyelectrolyte nanostructures formed in the moving contact line: fabrication, characterization and applicationDemidenok, Konstantin 03 February 2010 (has links)
Having conducted the research described in this thesis I found that there exists a possibility to produce polyelectrolyte nanostructures on hydrophobic surfaces by application of the moving contact line approach. It was demonstrated that the morphology of nanostructures displays a range of structure variations from root-like to a single wire structure with a high anisotropy and aspect ratio (providing diameters of several nanometers and the length limited by the sample surface dimensions). Such nanostructures can be produced exactly on the spot of interest or can be transferred from the surface where they were produced to any other surfaces by the contact printing technique.
A model describing the polymer deposition during the moving contact line processes on hydrophobic surfaces has been proposed. The application of this model provides the ground for an explanation of all the obtained experimental data.
Utilizing moving contact line approach aligned one-dimensional polycation structures were fabricated and these structures were used as templates for assembling amphiphile molecules.
Quasiperiodic aligned and oriented nanostructures of polyelectrolyte molecules formed in moving droplets were utilized for fabrication of electrically conductive one-dimensional nanowires.
|
340 |
Suzuki and Kumada Surface Initiated Polycondensations: Novel Engineering Route to Conjugated Polymer SystemsBoyko, Kseniya 19 April 2011 (has links)
In the field of electronic organic materials, conjugated polymers (CPs) have attracted much attention in recent years. It has been well-established that
performances of thin-film devices based on π-conjugated polymers, such as light-emitting diodes, field-effect transistors and photovoltaic cells, are strongly dependent on the organisation of the polymer molecules and their interactions with other constituents in multicomponent devices. The use of CPs in integrated circuits, solar cells, light-emitting diodes or sensors often requires their covalent fixation and patterning on various surfaces. CPs can be grafted to functionalized surfaces by (electro)chemical cross-linking; however, it is difficult to control a structural order within the cross-linked films. The attachment of CP chains to substrates by their end-points to form polymer brushes would be an interesting alternative, and could possibly be crucial for many devices requiring charge injection and charge transport processes.
The main aim of this work, which was the synthesis of covalently grafted conjugated polymer brushes on solid substrates using a "grafting from" approach, was successfully performed.
During the course of this work, the process of surface-initiated polycondensation was investigated. The newly developed method to selectively graft conjugated polymers from different substrates such as Si-wafers, quartz slides or modificated nanoparticles allowed us to produce different architectures which were earlier possible to prepare only non-conductive polymers. Exposure of the substrate with an activated surface layer into the monomer solution produced polymer brushes in a very economical way. Since only monomer was consumed for grafting from the surface.
The grafting process was extensively investigated by different methods, and the thickness of the obtained poly(fluorene) films was elucidated by Null-ellipsometry and confirmed by the AFM scratch-test. Preliminary characteristics of the device, based on PS(Br)-core poly(octylfluorene)-shell nanoparticles, showed satisfactory results (such as turn-on voltage and electroluminescence in a blue region). They could be improved by replacement of the insulating PS(Br)-core of nanoparticles with other substances (semiconductive, etc.). There is still plenty of room for further
development and improvement of the synthesis of poly(fluorene)-based polymer brushes.
The polymer structures developed in this work can be utilized as an active layer in lab-on-chip devices. Alkyl groups in the 9th position of the poly(fluorene) monomer unit can be replaced by tailored receptors to detect specific species including small molecules, metal ions and biomolecules due to enhanced sensitivity through sensory signal amplification. Post-polymerization modifications may lead to highly water-swellable conjugated polyelectrolyte brushes. Also, polymerization of initially optically active fluorene-monomers may be the crucial step to the generation of a light source devices with a large degree of circularly polarized electroluminescence. This is of great interest for utilization as backlight for liquid crystalline displays. We believe that the utilization of covalently surface-immobilized conjugated polymers may have a great impact on the development of present-day technological processes.
|
Page generated in 0.1172 seconds