• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effects of Air Pollution on the Intestinal Microbiota: A Novel Approach to Assess How Gut Microbe Interactions with the Environment Affect Human Health

Fitch, Megan N. 05 1900 (has links)
This thesis investigates how air pollution, both natural and anthropogenic, affects changes in the proximal small intestine and ileum microbiota profile, as well as intestinal barrier integrity, histological changes, and inflammation. APO-E KO mice on a high fat diet were randomly selected to be exposed by whole body inhalation to either wood smoke (WS) or mixed vehicular exhaust (MVE), with filtered air (FA) acting as the control. Intestinal integrity and histology were assessed by observing expression of well- known structural components tight junction proteins (TJPs), matrix metallopeptidase-9 (MMP-9), and gel-forming mucin (MUC2), as well known inflammatory related factors: TNF-α, IL-1β, and toll-like receptor (TLR)-4. Bacterial profiling was done using DNA analysis of microbiota within the ileum, utilizing 16S metagenomics sequencing (Illumina miSeq) technique. Overall results of this experiment suggest that air pollution, both anthropogenic and natural, cause a breach in the intestinal barrier with an increase in inflammatory factors and a decrease in beneficial bacteria. This evidence suggests the possibility of air pollution being a potential causative agent of intestinal disease as well as a possible contributing mechanism for induction of systemic inflammation.

Page generated in 0.1045 seconds