• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studium variability IRES elementů viru hepatitidy typu C / Variability of the IRES elements of the hepatatis C virus

Zeman, Jakub January 2013 (has links)
Hepatitis C virus (HCV) has an internal ribosomal binding site (IRES) located near the 5ʹ end of its genome. The HCV IRES is capable of direct binding to the 40S small ribosomal unit and eukaryotic initiation factor eIF3, and can initiate translation after the assembly of the whole 80S ribosome. Various molecular types can act as IRES inhibitors. Small molecule compounds seem to be the most promising agent for use in the clinic. The main objective of the thesis was to develop a system for searching for small molecule compound inhibitors of HCV IRES in a library of chemical compounds. Several variants of vector carrying bicistronic cassettes were prepared. After validating their functionality by transient transfection of mammalian cell cultures, mammalian stable cell lines were established. These stable cell lines will allow for automatization of the search for small molecule compound inhibitors of HCV IRES. Our second objective was to study the variability of HCV IRES sequences in patient samples. The samples were analysed by temperature gradient gel electrophoresis (TGGE). Select specimen were sequenced, cloned into a vector with bicistronic cassette and analysed by flow cytometry. In this was we evaluated the effect of specific mutations in the HCV IRES sequence on the level of IRES dependent...
2

Macrolide Antibiotics in Bacterial Protein Synthesis / Makrolidantibiotika i Bakteriell Proteinsyntes

Lovmar, Martin January 2005 (has links)
<p>Macrolides are a large group of clinically relevant antibiotics that inhibit protein synthesis by binding to the large ribosomal subunit in the peptide exit tunnel, close to the peptidyl transferase center (PTC). We have shown that the peptide length of the resulting peptidyl-tRNA drop-off products is proportional to the distance between the PTC and the respective macrolide in the tunnel. This indicates that macrolides act by sterically blocking the nascent peptide exit path.</p><p>A substantial amount of read-through into full-length product was observed for some macrolides and depends on the relation between the dissociation rate constants for peptidyl-tRNA and the macrolide, respectively. The dissociation rate constant for josamycin is 60 times lower than the dissociation rate constant for erythromycin, which explains why no read-through is seen for josamycin in contrast to erythromycin.</p><p>Macrolides do not compete with binding of ternary complexes, hence they are non-competitive inhibitors. However, the text-book description is not valid for macrolide antibiotics, and we show that this is due to the equilibrium assumption generally used to describe non-competitive inhibitors. Our results suggest that a more thorough mechanistic investigation is required to classify inhibitors than what has been proposed previously.</p><p>Further, we have examined the phenomenon of peptide mediated resistance to macrolides. Our results show that expression of a resistance peptide increases the dissociation rate constant for erythromycin.</p><p>In addition, we have examined the accuracy of protein synthesis on three different levels: (<i>i</i>) How do the three initiation factors accomplish fast and accurate initiation of protein synthesis, (<i>ii</i>) how does proof-reading work on the isoleucyl-tRNA synthetase, and (<i>iii</i>) what is the accuracy in the tRNA selection and how is it accomplished? Our data propose a change of the view on all these mechanisms.</p><p>In conclusion this thesis presents new results on protein synthesis, macrolide antibiotics and macrolide resistance.</p>
3

Macrolide Antibiotics in Bacterial Protein Synthesis / Makrolidantibiotika i Bakteriell Proteinsyntes

Lovmar, Martin January 2005 (has links)
Macrolides are a large group of clinically relevant antibiotics that inhibit protein synthesis by binding to the large ribosomal subunit in the peptide exit tunnel, close to the peptidyl transferase center (PTC). We have shown that the peptide length of the resulting peptidyl-tRNA drop-off products is proportional to the distance between the PTC and the respective macrolide in the tunnel. This indicates that macrolides act by sterically blocking the nascent peptide exit path. A substantial amount of read-through into full-length product was observed for some macrolides and depends on the relation between the dissociation rate constants for peptidyl-tRNA and the macrolide, respectively. The dissociation rate constant for josamycin is 60 times lower than the dissociation rate constant for erythromycin, which explains why no read-through is seen for josamycin in contrast to erythromycin. Macrolides do not compete with binding of ternary complexes, hence they are non-competitive inhibitors. However, the text-book description is not valid for macrolide antibiotics, and we show that this is due to the equilibrium assumption generally used to describe non-competitive inhibitors. Our results suggest that a more thorough mechanistic investigation is required to classify inhibitors than what has been proposed previously. Further, we have examined the phenomenon of peptide mediated resistance to macrolides. Our results show that expression of a resistance peptide increases the dissociation rate constant for erythromycin. In addition, we have examined the accuracy of protein synthesis on three different levels: (i) How do the three initiation factors accomplish fast and accurate initiation of protein synthesis, (ii) how does proof-reading work on the isoleucyl-tRNA synthetase, and (iii) what is the accuracy in the tRNA selection and how is it accomplished? Our data propose a change of the view on all these mechanisms. In conclusion this thesis presents new results on protein synthesis, macrolide antibiotics and macrolide resistance.
4

Molekulare Charakterisierung an der hypothalamischen Appetitregulation beteiligter Rezeptoren

Tarnow, Patrick 06 January 2009 (has links)
Das Körpergewicht und die Nahrungsaufnahme werden unter anderem vom Hypothalamus reguliert. Dort werden Hormonelle Signale der Peripherie und neuronale Signale integriert. Die G-Protein gekoppelten Melanocortinrezeptoren 3 und 4 (MC3R und MC4R) werden von ihren Agonisten, den Melanocortinen aktiviert und durch den inversen Agonisten/Antagonisten Agouti-Related Peptide (AgRP) inaktiviert. Als weiterer Downstream-Mediatoren der MC4R-Aktivierung wurden kürzlich Brain Derived Neurotrophic Factor (BDNF) und dessen Rezeptor TrkB (Tropomyosin-Related –Kinase) identifiziert. Mutationen im MC4R gelten als häufigste monogenetische Ursache für Adipositas. Da viele dieser Mutationen aber in vitro funktionell nicht relevant sind, wurde ein Amosäurevergleich von orthologen MC4R aus 70 verschiedenen Spezies erstellt. Funktionsverlustmutationen waren häufiger an koservierten Positionen, während Mutationen ohne Effekt überwiegend an schwach konservierten Positionen zu finden waren. Funktionelle Charakterisierung der von in Mausmodellen identifizierten Punktmutationen I194F und Y302C ergaben eine gute in-vivo/in-vitro Korrelation. Desweiteren wurden in der Normalbevölkerung in normalgewichtigen Personen identifizierte MC4R-Punktmutationen funktionell charakterisiert. Die Mutationen R7C, A70T, T112K, Q156R, M200V, V166I und R236H hatten keinen Effekt auf die Rezeptorfunktion, die H158R. Mutation zeigte eine hohe Basalaktivität, die aber durch AgRP erniedrigt werden konnte. Die in adipösen Patienten gefundenen Mutationen S136F und S139R wiesen einen kompletten Funktionsverlust auf, erstere verursachte zudem sogar einen dominant-negativen Effekt bei Koexpression mit dem Wildtyprezeptor. Für den MC3R wurde das zum Translationsstart bevorzugte Startcodon identifiziert. Für die Rezeptortyrosinkinase TrkB konnte in Hefe-2-Hybridscreens der neue Interaktionspartner Sept3 identifiziert werden. Dieses Protein bindet phosphorylierungsunabhängig an die intrazelluläre Juxtamembrandomäne. / Bodyweight and food intake are regulated by the hypothalamus which integrates peripheral hormonal and neural signals. The G-protein-coupled melanocortin-receptors 3 and 4 (MC3R and MC4R) are activated by melanocortins or inhibited by agouti-related pepetide (AgRP) and signal via the cAMP pathway. Brain-derived neurotrophic Factor (BDNF) was recently shown to signal downstream the MC4R via its receptor TrkB (tropomyosin-related kinase). Mutations in the MC4R are the most common cause of monogenetic obesity. However, many of these mutations are not functionally relevant in vitro. Here, an amino acid alignment of orthologous MC4R from over 70 species was used to evaluate reported mutations. Loss-of-function mutations were predominantly located at highly conserved positions whereas mutations without effect were located at non-conserved positions. Functional characterization of MC4R point mutations I194F (partial loss of function) and Y302C (complete loss of function) identified in mouse models showed good in vitro/in vivo correlation. Furthermore mutations found in normal weight persons were characterized: R7C, A70T, T112K, Q156K, M200V, V166I and R236H had no effect on receptor function in vitro, whereas the H158R Mutation showed high constitutive activity, which however could be diminished by AgRP. The mutations S136F and S139F identified in obese patients were characterized as complete loss-of-function mutations, the former additionally caused a dominant-negative effect on wildtype MC4R in vitro. For the MC3R the preferred start-codon for initiation of translation was identified. For TrkB Sept3 could be identified as a new interaction partner in a yeast-2-hybrid screen. This Protein belonging to the septin family binds to the intracellular juxtamembrane domain of TrkB independent of phosphorylation of the Shc-binding site.

Page generated in 0.1661 seconds