• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 13
  • 8
  • 6
  • 5
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 148
  • 148
  • 36
  • 29
  • 28
  • 27
  • 26
  • 21
  • 21
  • 20
  • 17
  • 15
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Caracterização de propriedades de papel para impressão por jato de tinta. / Characterization of paper properties for inkjet printing.

Patrícia Kaji Yasumura 30 January 2012 (has links)
Os novos processos de impressão têm exigido novas características do papel. Entre os novos processos encontram-se as impressões digitais, em especial, a impressão por jato de tinta. Este tipo de impressão é baseado na ejeção de uma gota de tinta por um orifício em uma cabeça de impressão, que atinge o substrato formando um pixel. A definição das imagens formadas neste tipo de impressão é, portanto, dependente das características da tinta e, principalmente, do substrato. O presente trabalho tem por objetivo caracterizar as propriedades do papel que são importantes para a impressão por jato de tinta, desde o momento em que a tinta atinge a superfície do papel até a sua absorção. As propriedades consideradas neste estudo foram: a rugosidade, a porosidade e as propriedades químicas da superfície. A rugosidade foi avaliada pelos métodos tradicionais da área de papel e celulose (baseados em vazão de ar), por método perfilométrico e, qualitativamente, por imagens obtidas por microscopia eletrônica de varredura (MEV). Para a porosidade foi utilizado um método tradicional, além de porosimetria de intrusão de mercúrio e microtomografia de raios X, e a composição química da superfície foi avaliada por espectroscopia por energia dispersiva (EDS) e espectroscopia Raman. A partir dos resultados obtidos, as propriedades do papel foram qualificadas e as suas influências no espalhamento e absorção de líquidos em geral foram identificadas. Além da caracterização das propriedades superficiais e porosimétricas do papel, as correlações entre as propriedades e os diferentes métodos utilizados na sua determinação foram discutidas. Os métodos de análise tradicional não conseguem caracterizar os papéis em níveis de resolução capazes de fornecer informações sobre a influência das propriedades estudadas na impressão por jato de tinta. Ao mesmo tempo, a caracterização do papel para este tipo de impressão e a compreensão das influências das propriedades do papel no espalhamento e absorção de tinta e líquidos em geral só é possível quando as propriedades são analisadas em conjunto. / The new printing processes have required new features of the paper. Among the new printing processes are the digital printing, in particular, the inkjet printing. This type of printing is based on the ejection of an ink drop through a hole in a print head, which reaches the substrate forming a pixel. The resolution of the images formed in this type of printing is therefore dependent on the characteristics of the ink, and especially of the substrate. The present work aims to characterize the properties of paper that are important to the inkjet printing, from the moment the ink hits the paper surface to its absorption. The properties considered in this study were: roughness, porosity and chemical properties of the surface. The roughness was evaluated by traditional methods in pulp and paper sector (based on air flow), by profilometry and qualitative using images obtained by scanning electron microscopy (SEM). For the porosity, a traditional method was used, and also mercury intrusion porosimetry and X-ray microtomography. The chemical composition of the surface was evaluated by energy dispersive spectroscopy (EDS) and Raman spectroscopy. From the results obtained, the paper properties were described and their influence on the spreading and absorption of liquids in general have been identified. Besides the characterization of the paper surface properties and porosity, the correlations between the properties and the different methods used for measurement were discussed. The traditional analysis methods can not characterize the paper in levels of resolution capable of providing information about the influence of the properties studied in inkjet printing. At the same time, to characterize paper for this printing process and to understand the influences of the paper properties on the spreading and absorption of inks and liquids in general the paper properties have to be analyzed together.
42

Optimisation de la formulation de matériaux diélectriques en vue de la fabrication de modules LTCC par impression jet d'encre / Formulation of dielectric inks for inkjet-printed LTCC fabrication

Singlard, Marc 11 December 2015 (has links)
La formulation d'une encre diélectrique et son dépôt par impression jet d'encre en vue de la fabrication de modules LTCC ont été étudiés, dans le cadre du projet européen SPrinTronics. Les verrous technologiques de la formulation de l'encre ont pu être levés afin d'ajuster ses caractéristiques au procédé. Pour cela, les mécanismes d'hydrolyse de la poudre, d'adsorption/désorption du dispersant et de fragmentation de la poudre ont été étudiés. Il a été mis en évidence la complexité d'obtenir à la fois une grande stabilité et une granulométrie fine. Les tests préliminaires d'impression ont révélé que les différentes stratégies influencent fortement la planéité des plans. Notamment, il est possible de minimiser la rugosité de surface de plans diélectriques imprimés par jet d'encre en maîtrisant la nature de la maille, l'interpénétration des gouttes et la stratégie de remplissage de la maille. Ces différents travaux sont prometteurs quand à l'industrialisation futur de la méthode. Cependant, les efforts doivent être poursuivis afin de mettre au point des véhicules de test. / Formulation of dielectric ink and its deposit by inkjet printing in order to manufacture LTCC have been studied, in the context of SPrinTronics european project. Technological barriers have been solved and the ink characteristics have been adjusted to the inkjet specifications by studying hydrolysis mechanisms of the powder, adsorption/desorption of the dispersant and powder milling. It has been very complex to obtain simultaneously a good stability (low viscosity and sedimentation rate) and fine particle size. Preliminary printing tests have been revealed that printing strategies are efficients to reduce rugosity of printed dielectric plans, especially the lattice, drop-to-drop distance and the filling strategy. These studies are promising for LTCC printing. However, efforts should be coutinued to print test vehicles.
43

Inkjet printing of carbon nanotubes for electronic applications

Mustonen, T. (Tero) 24 November 2009 (has links)
Abstract In this thesis, preparation of carbon nanotube (CNT) inks and inkjet printing of aqueous dispersions of CNTs for certain electrical applications are studied. The nanotube inks prepared in this work are based on chemically oxidized CNTs whose polar side groups enable dispersion in polar solvents. Subsequent centrifugation and decanting processes are used to obtain stable dispersions suitable for inkjet printing. The inks are based on either carboxyl functionalized multi-walled carbon nanotubes (MWCNTs), carboxyl functionalized single wall carbon nanotubes (SWCNTs) or SWCNT-polymer composites. The applicability of MWCNT inks is firstly demonstrated as printed patterns of tangled nanotube networks with print resolution up to ∼260 dpi and surface resistivity of ∼40 kΩ/□. which could be obtained using an ordinary inkjet office printer. In addition, MWCNT inks are found to exhibit spatial ordering in external magnetic fields due to entrapped iron catalyst nanoparticles in the inner-tubular cavity of the nanotubes. Ordering of nanotubes in the inks and in drying droplets placed in relatively weak magnetic fields (B ≤ 1 T) is demonstrated and studied. The high electrical conductivity and optical transparency properties of SWCNTs are utilized for enhancing the conductivity of transparent poly(3,4-ethylenedioxythiophene):poly(styrenesulphonate) (PEDOT:PSS) films. Polymer-nanotube composite materials are inkjet printed on flexible substrates. It is demonstrated that incorporation of SWCNTs in the thin polymer films significantly increases the electrical conductivity of the film without losing the high transparency (> 90%). The structure of composite films is studied using atomic force microscopy (AFM). The electronic properties of deposited random SWCNT networks are studied. The amount of deposited SWCNT is controlled by the inkjet printing technique. In dense networks the current-voltage behaviour is linear whereas for sparse films the behaviour is nonlinear. It is shown that the conduction path in dense films is through the metallic nanotubes, but in sparse films the percolation occurs through random networks of metallic and semiconducting SWCNTs having Schottky-type contacts. The existence of Schottky-junctions in the films is demonstrated with field-effect transistors (FET) on Si-chips and on polymer substrates. The latter is demonstrated as fully printed transistors using a single ink as a material source. FETs are further utilized as chemical-FET sensor applications. The performance of resistive CNT sensors and their comparisons with chem-FETs in terms of selectivity are studied for H2S gas.
44

Inkjet printing of silver for direct write applications

Xu, Bojun January 2010 (has links)
Direct Write (DW) defines an emerging group of technologies that allow the printing of electronic and other functional components out of vacuum, directly onto conformal surfaces. Both ink-jet and nozzle deposition technologies, which are seen to be complementary for the wide range of materials and processing required by industry, are employed in this project.Silver neodecanoate salt is sensitive to both light source, including ultra violet light (UV) and heat source, and is a good inkjet printing precursor when dissolved in xylene. We have studied the electrical properties of inkjet printed silver samples, derived from silver neodecanoate ink, and investigated the influence of UV treatment before thermal curing the silver samples. UV exposure at room temperature is believed to control the nucleation of silver particles. In addition we have studied the influence of thermal pre-treatment on the printed samples. This pre-treatment is thought to assist the neodecanoate precursor to form a uniform distribution of silver nanoparticles. The influence of UV exposure, thermal pre-treatment and the thermal curing conditions on subsequent track microstructure, and its influence on electrical resistivity is reported for glass substrates. Furthermore, a series of extruding experimental at different nozzle offset and pumping pressure settings are conducted based on the rheological property of silicone oil and silver paste to find the ideal condition for producing continuous tracks with good shape. These findings are used to simulate a computer model for further applications.
45

Flow induced polymer degradation during ink-jet printing

Alamry, Khalid Ahmad Abet January 2010 (has links)
The effect of hydrogen bonding interactions on the drop generation of both acid and hydroxyl-containing polymer solutions is reported showing that polymer chain relaxation can be influenced through the use of appropriate polymer co-solvent interactions for polymers having weight average molecular weight (Mw) < 100 kDa. Reported for the first time is evidence of flow-induced polymer degradation during inkjet printing for both poly(methylmethacrylate) and polystyrene in good solvent. Polymers having Mw either less than 100 kDa or greater than approximately 1,000 kDa show no evidence of molecular weight degradation. The lower boundary condition is a consequence of low Deborah number imposed by the printhead geometry and the upper boundary condition due to viscoelastic damping. For intermediate molecular weights the effect is greatest at high elongational strain rate and low solution concentration with higher polydispersity polymers being most sensitive to molecular weight degradation. For low polydispersity samples, PDi £ 1.3 chain breakage is essentially centro-symmetric induced either by overstretching when the strain rate increases well beyond a critical value, that is the stretching rate is high enough to exceed the rate of relaxation or by turbulence. For higher polydispersity samples, PDi chain breakage is consistent with almost random scission along the chain inferring that the forces required to break the chain are additionally transmitted either by valence bonds, i.e. network chains and junctions or discrete entanglements rather than solely by hydrodynamic interaction. Preliminary results are presented on the degradation of molecular structure in water of two galactomannan’s in water after inkjet printing. Galactommann’s are known to form complex H-bonded structures in water and the results are consistent with breaking of the H-bonding structure at low reduced concentration with evidence of main chain breakage at higher reduced concentration, c/c* = 0.25.
46

Simple fabrication of 12 μm thin nanocomposite fuel cell membranes by direct electrospinning and printing

Breitwieser, Matthias, Klose, Carolin, Klingele, Matthias, Hartmann, Armin, Erben, Johannes, Cho, Hyeongrae, Kerres, Jochen, Zengerle, Roland, Thiele, Simon 27 October 2020 (has links)
Direct membrane deposition (DMD) was recently introduced as a novel polymer electrolyte membrane fabrication method. Here, this approach is extended to fabricate 12 μm thin nanocomposite fuel cell membranes. Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofibers are directly electrospun onto gas diffusion electrodes. By inkjet-printing Nafion ionomer dispersion into the pore space of PVDF-HFP nanofiber mats, composite membranes of 12 μm thickness were fabricated. At 120 °C and 35% relative humidity, stoichiometric 1.5/2.5 H2/air flow and atmospheric pressure, the power density of the DMD fuel cell (0.19 W cm-2), was about 1.7 times higher than that of the reference fuel cell (0.11 W cm-2) with Nafion HP membrane and identical catalyst. A lower ionic resistance and, especially at 120 °C, a reduced charge transfer resistance is found compared to the Nafion HP membrane. A 100 h accelerated stress test revealed a voltage decay of below 0.8 mV h-1, which is in the range of literature values for significantly thicker reinforced membranes. Finally, this novel fabrication approach enables new degrees of freedom in the design of complex composite membranes. The presented combination of scalable deposition techniques has the potential to simplify and thus reduce cost of composite membrane fabrication at a larger scale.
47

Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals

Abulikemu, Mutalifu 05 November 2014 (has links)
Metal and semiconducting nanocrystals have received a great deal of attention from fundamental scientists and application-oriented researchers due to their physical and chemical properties, which differ from those of bulk materials. Nanocrystals are essential building blocks in the development of nanostructured devices for energy conversion. Colloidal metals and metal chalcogenides have been developed for use as nanocrystal inks to produce efficient solar cells with lower costs. All high-performing photovoltaic nanocrystals contain toxic elements, such as Pb, or scarce elements, such as In; thus, the production of solution-processable nanocrystals from earth-abundant materials using environmentally benign synthesis and processing methods has become a major challenge for the inorganic semiconductor-based solar field. This dissertation, divided into two parts, addresses several aspects of these emerging challenges. The first portion of the thesis describes the synthesis and characterization of nanocrystals of antimony sulfide, which is composed of non-scarce and non-toxic elements, and examines their performance in photovoltaic devices. The effect of various synthetic parameters on the final morphology is explored. The structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using different deposition processes. We achieved promising power conversion efficiencies of 1.48%. The second part of the thesis demonstrates a novel method for the in situ synthesis and patterning of nanocrystals via reactive inkjet printing. The use of low-cost manufacturing approaches for the synthesis of nanocrystals is critical for many applications, including photonics and electronics. In this work, a simple, low-cost method for the synthesis of nanocrystals with minimum size variation and waste using reactive inkjet printing is introduced. As a proof of concept, the method was used for the in situ synthesis of gold nanoparticles as a model system. Relatively monodisperse gold nanoparticles were produced. The size and shape of gold nanoparticles can be controlled by the gold precursor and surfactant concentration in the ‘ink.’ This approach can be extended to the synthesis of other nanocrystals and is thus a truly impactful process for the low-cost synthesis of materials and devices incorporating nanocrystals.
48

Inkjet Printing of Paper-Based Wideband and High Gain Antennas

Cook, Benjamin 07 December 2011 (has links)
This thesis represents a major contribution to wideband and high gain inkjet-printed antennas on paper. This work includes the complete characterization of the inkjet printing process for passive microwave devices on paper substrate as well as several ultra-wideband and high gain antenna designs. The characterization work includes the electrical characterization of the permittivity and loss tangent for paper substrate through 10 GHz, ink conductivity data for variable sintering conditions, and minimum feature sizes obtainable by today’s current inkjet processes for metallic nanoparticles. For the first time ever, inkjet-printed antennas are demonstrated that operate over the entire UWB band and demonstrate gains up to 8dB. This work also presents the first fractal-based inkjet-printed antennas with enhanced bandwidth and reduced production costs, and a novel slow wave log periodic dipole array which shows minimizations of 20% in width over conventional log periodic antennas.
49

Příprava vodivých struktur bezproudovým pokovením vytištěného prekurzoru / Fabrication of conducting patterns by material electroless plating of printed precursor

Kováčová, Silvia January 2021 (has links)
The subject of this diploma thesis is the preparation of conductive structures by electroless plating of an extruded precursor. The experimental part deals with the preparation of standard patterns based on the length of immersion time in a coppering bath. The precursor layers were applied with Fujifilm Dimatix to various receiver substrates. The individual substrates with the precursor layer were immersed in the copper solution within different time intervals. The structure of the layers of grown copper and their thickness was characterized by a profilometer.
50

Světlostálost barevných digitálních výtisků / Lightfastness of digital color prints

Kulhánková, Michaela January 2020 (has links)
In this diploma thesis the current methods of color fastness evaluation of color digital prints were solved. The theoretical part provides basic information needed to understand the experiment. Samples of inkjet prints were subjected to accelerated and long-term lightfastness test. The long-term test took place in the spaces of the Faculty of Chemistry, Brno University of Technology, which fulfilled the condition of direct light in a closed room. For one year, samples were exposed and their reflection spectra were measured at monthly intervals. An accelerated lightfastness test was performed in a solar chamber with a xenon lamp. Only some samples were selected for this test because of the small space in the chambre and thw failure of the instrument. At regular intervals were measured again their reflection spectra from which the colorimetric values were calculated. After completion of the testing, the rate parameter was determined from the dependence of the loss of the normalized gamut volume on different doses of irradiation. In the case of long-term testing, it was based on data from the Hydrometeorological Institute, which gave values of direct outdoor solar radiation. In the accelerated test, the irradiation dose of the sample up to 800 nm was determined. Finally, the lightfastness of each sample was examined and compared with each other and the relevance of the accelerated test was assessed.

Page generated in 0.4306 seconds