Spelling suggestions: "subject:"inorganic"" "subject:"inorganique""
11 |
Biomimetic Scaffolds for the Controlled Release of Bioactive Molecules for Tissue Engineering ApplicationsMinardi, Silvia <1986> 29 April 2015 (has links)
The temporospatial controlled delivery of growth factors is crucial to trigger the desired healing mechanisms in target tissues. The uncontrolled release of growth factors has been demonstrated to cause severe side effects in its surrounding tissues. Thus, the first working hypothesis was to tune and optimize a newly developed multiscale delivery platform based on a nanostructured silicon particle core (pSi) and a poly (dl-lactide-co-glycolide) acid (PLGA) outer shell. In a murine subcutaneous model, the platform was demonstrated to be fully tunable for the temporal and spatial control release of the payload. Secondly, a multiscale approach was followed in a multicompartment collagen scaffold, to selectively integrate different sets of PLGA-pSi loaded with different reporter proteins. The spatial confinement of the microspheres allowed the release of the reporter proteins in each of the layers of the scaffold. Finally, the staged and zero-order release kinetics enabled the temporal biochemical patterning of the scaffold. The last step of this PhD project was to test if by fully embedding PLGA microspheres in a highly structured and fibrous collagen-based scaffold (camouflaging), it was possible to prevent their early detection and clearance by macrophages. It was further studied whether such a camouflaging strategy was efficient in reducing the production of key inflammatory molecules, while preserving the release kinetics of the payload of the PLGA microspheres. Results demonstrated that the camouflaging allowed for a 10-fold decrease in the number of PLGA microspheres internalized by macrophages, suggesting that the 3D scaffold operated by cloaking the PLGA microspheres. When the production of key inflammatory cytokines induced by the scaffold was assessed, macrophages' response to the PLGA microspheres-integrated scaffolds resulted in a response similar to that observed in the control (not functionalized scaffold) and the release kinetic of a reporter protein was preserved.
|
12 |
Photophysics of Carbon Nanotubes: from Dispersion to Supramolecular SystemsPavoni, Eleonora <1987> 30 April 2015 (has links)
The aim of this PhD thesis is the investigation of the photophysical properties of materials that can be exploited in solar energy conversion. In this context, my research was mainly focused on carbon nanotube-based materials and ruthenium complexes. The first part of the thesis is devoted to carbon nanotubes (CNT), which have unique physical and chemical properties, whose rational control is of substantial interest to widen their application perspectives in many fields. Our goals were (i) to develop novel procedures for supramolecular dispersion, using amphiphilic block copolymers, (ii) to investigate the photophysics of CNT-based multicomponent hybrids and understand the nature of photoinduced interactions between CNT and selected molecular systems such as porphyrins, fullerenes and oligo (p-phynylenevinylenes). We established a new protocol for the dispersion of SWCNTs in aqueous media via non-covalent interactions and demonstrated that some CNT-based hybrids are suitable for testing in PV devices. The second part of the work is focussed on the study of homoleptic and heteroleptic Ru(II) complexes with bipyridine and extended phenanthroline ligands. Our studies demonstrated that these compounds are potentially useful as light harvesting systems for solar energy conversion. Both CNT materials and Ru(II) complexes have turned out to be remarkable examples of photoactive systems. The morphological and photophysical characterization of CNT-based multicomponent systems allowed a satisfactory rationalization of the photoinduced interactions between the individual units, despite several hurdles related to the intrinsic properties of CNTs that prevent, for instance, the utilization of laser spectroscopic techniques. Overall, this work may prompt the design and development of new functional materials for photovoltaic devices.
|
13 |
Photoactive nanodevices for potential biological applicationsCarboni, Valentina <1987> 29 April 2015 (has links)
Biological systems are complex and highly organized architectures governed by noncovalent interactions, which are responsible for molecular recognition, self-assembly, self-organization, adaptation and evolution processes. These systems provided the inspiration for the development of supramolecular chemistry, that aimed at the design of artificial multicomponent molecular assemblies, namely supramolecular systems, properly designed to perform different operations: each constituting unit performs a single act, whereas the entire supramolecular system is able to execute a more complex function, resulting from the cooperation of the constituting components. Supramolecular chemistry deals with the development of molecular systems able to mimic naturally occurring events, for example complexation and self-assembly through the establishment of noncovalent interactions. Moreover, the application of external stimuli, such as light, allows to perform these operations in a time- and space-controlled manner. These systems can interact with biological systems and, thus, can be applied for bioimaging, therapeutic and drug delivery purposes. In this work the study of biocompatible supramolecular species able to interact with light is presented. The first part deals with the photophysical, photochemical and electrochemical characterization of water-soluble blue emitting triazoloquinolinium and triazolopyridinium salts. Moreover, their interaction with DNA has been explored, in the perspective of developing water-soluble systems for bioimaging applications. In the second part, the effect exerted by the presence of azobenzene-bearing supramolecular species in liposomes, inserted both in the phospholipid bilayer and in the in the aqueous core of vesicles has been studied, in order to develop systems able to deliver small molecules and ions in a photocontrolled manner. Moreover, the versatility of azobenzene and its broad range of applications have been highlighted, since conjugated oligoazobenzene derivatives proved not to be adequate to be inserted in the phospholipid bilayer of liposomes, but their electrochemical properties made them interesting candidates as electron acceptor materials for photovoltaic applications.
|
14 |
Optimization of molecular and crystalline forms of drugs, agrochemicals, pesticides in relation to activity, bioavailability, patentability and to the fabrication of polymorphs, solvates, co-crystals with green chemistry methods / Progettazione, sintesi e caratterizzazione in solido di forme cristalline di farmaci, pesticidi e fitofarmaci, in accordo con i principi di green chemistryNanna, Saverio <1985> 29 April 2015 (has links)
This doctorate was funded by the Regione Emilia Romagna, within a Spinner PhD project coordinated by the University of Parma, and involving the universities of Bologna, Ferrara and Modena.
The aim of the project was:
- Production of polymorphs, solvates, hydrates and co-crystals of active pharmaceutical ingredients (APIs) and agrochemicals with green chemistry methods;
- Optimization of molecular and crystalline forms of APIs and pesticides in relation to activity, bioavailability and patentability.
In the last decades, a growing interest in the solid-state properties of drugs in addition to their solution chemistry has blossomed. The achievement of the desired and/or the more stable polymorph during the production process can be a challenge for the industry. The study of crystalline forms could be a valuable step to produce new polymorphs and/or co-crystals with better physical-chemical properties such as solubility, permeability, thermal stability, habit, bulk density, compressibility, friability, hygroscopicity and dissolution rate in order to have potential industrial applications.
Selected APIs (active pharmaceutical ingredients) were studied and their relationship between crystal structure and properties investigated, both in the solid state and in solution. Polymorph screening and synthesis of solvates and molecular/ionic co-crystals were performed according to green chemistry principles. Part of this project was developed in collaboration with chemical/pharmaceutical companies such as BASF (Germany) and UCB (Belgium). We focused on on the optimization of conditions and parameters of crystallization processes (additives, concentration, temperature), and on the synthesis and characterization of ionic co-crystals.
Moreover, during a four-months research period in the laboratories of Professor Nair Rodriguez-Hormedo (University of Michigan), the stability in aqueous solution at the equilibrium of ionic co-crystals (ICCs) of the API piracetam was investigated, to understand the relationship between their solid-state and solution properties, in view of future design of new crystalline drugs with predefined solid and solution properties.
|
15 |
NMR Based Foodomics to Investigate the Digestibility of Protein-Rich Food ProductsMarcolini, Elena <1986> 29 May 2015 (has links)
Nowadays, in developed countries, the excessive food intake, in conjunction with a decreased physical activity, has led to an increase in lifestyle-related diseases, such as obesity, cardiovascular diseases, type -2 diabetes, a range of cancer types and arthritis.
The socio-economic importance of such lifestyle-related diseases has encouraged countries to increase their efforts in research, and many projects have been initiated recently in research that focuses on the relationship between food and health.
Thanks to these efforts and to the growing availability of technologies, the food companies are beginning to develop healthier food. The necessity of rapid and affordable methods, helping the food industries in the ingredient selection has stimulated the development of in vitro systems that simulate the physiological functions to which the food components are submitted when administrated in vivo. One of the most promising tool now available appears the in vitro digestion, which aims at predicting, in a comparative way among analogue food products, the bioaccessibility of the nutrients of interest.. The adoption of the foodomics approach has been chosen in this work to evaluate the modifications occurring during the in vitro digestion of selected protein-rich food products. The measure of the proteins breakdown was performed via NMR spectroscopy, the only techniques capable of observing, directly in the simulated gastric and duodenal fluids, the soluble oligo- and polypeptides released during the in vitro digestion process. The overall approach pioneered along this PhD work, has been discussed and promoted in a large scientific community, with specialists networked under the INFOGEST COST Action, which recently released a harmonized protocol for the in vitro digestion. NMR spectroscopy, when used in tandem with the in vitro digestion, generates a new concept, which provides an additional attribute to describe the food quality: the comparative digestibility, which measures the improvement of the nutrients bioaccessibility.
|
16 |
Graphene and Semicondutor or Metallic Nanoparticles for Energy ConversionMazzaro, Raffaello <1988> January 1900 (has links)
The purpose of the present PhD thesis is to investigate the properties of innovative nano- materials with respect to the conversion of renewable energies to electrical and chemical energy. The materials have been synthesized and characterized by means of a wide spectrum of morphological, compositional and photophysical techniques, in order to get an insight into the correlation between the properties of each material and the activity towards different energy conversion applications. Two main topics are addressed: in the first part of the thesis the light harvesting in pyrene functionalized silicon nanocrystals has been discussed, suggesting an original approach to suc- cessfully increase the absorption properties of these nanocrystals. The interaction of these nanocrystals was then studied, in order to give a deeper insight on the charge and energy extraction, preparing the way to implement SiNCs as active material in optoelectronic devices and photovoltaic cells. In addition to this, the luminescence of SiNCs has been exploited to increase the efficiency of conventional photovoltaic cells by means of two innovative architectures. Specifically, SiNCs has been used as luminescent downshifting layer in dye sensitized solar cells, and they were shown to be very promising light emitters in luminescent solar concentrators.
The second part of the thesis was concerned on the production of hydrogen by platinum nanoparticles coupled to either electro-active or photo-active materials. Within this context, the electrocatalytic activity of platinum nanoparticles supported on exfoliated graphene has been studied, preparing an high-efficiency catalyst and disclosing the role of the exfoliation technique towards the catalytic activity. Furthermore, platinum nanoparticles have been synthesized within photoactive dendrimers, providing the first proof of concept of a dendrimer-based photocatalytic system for the hydrogen production where both sensitizer and catalyst are anchored to a single scaffold.
|
17 |
Coupling Chromophores to Metal and Semiconductor Nanoparticles for Energy ConversionRavotto, Luca <1987> January 1900 (has links)
In this thesis work, we have investigated the interaction between molecular species and nanoparticles to realize organic-inorganic architectures able to perform complex photophysical and photoelectrochemical functions.
In a first study, we have coupled an organic oligomer to silicon nanoparticles, demonstrating the ability of this system to act as a light harvesting antenna, considerably enhancing the ability of silicon nanoparticles to exploit visible light to generate its typical very long lived excited state. The high two photon absorption coefficient of the dye allows the system to be excited by NIR femtosecond pulsed light, improving the applicability of the system in high-resolution bioimaging applications.
In a second study, we have performed the synthesis of a family of red-NIR emissive zinc complexes of benzodipyrrins, a little explored class of compounds, with the goal of a future integration with silicon nanoparticles to realize advanced photoactive systems. The complexes show good absorption and emission properties in an highly interesting spectral region for bioimaging and solar energy conversion. Moreover, a serendipitous chemical transformation has been observed and investigated, demonstrating its value to access a completely novel class of4 luminescent compounds.
Finally, a supramolecular system composed of platinum nanoparticles coupled to a photoactive dendrimer has been synthesized and characterized, proving its ability to drive the evolution of hydrogen from water upon photoirradiation. This novel approach, thanks to the close spatial arrangement of the different components of a photosynthetic system (from the light absorbing units to the catalyst), opens the way to the realization of efficient systems with a wide variety of chromophores (exploiting the well developed chemistry of dendrimeric systems). This strategy overcomes the typical problems of diffusion based approaches, such as the necessity to use long-lived phosphorescent compounds containing expensive metals and the need of electron relays to transport electrons between the photosensizer and the catalyst.
|
18 |
Development of synthetic methods of silicon nanocrystals functionalized with photoactive moleculesLocritani, Mirko <1983> 29 April 2015 (has links)
The thesis is focused on the development of a method for the synthesis of silicon nanocrystals with different sizes, narrow size distribution, good optical properties and stability in air.
The resulting silicon nanocrystals have been covalently functionalized with different chromophores with the aim to exploit the new electronic and chemical properties that emerge from the interaction between silicon nanocrystal surface and ligands.
The purpose is to use these chromophores as light harvesting antennae, increasing the optical absorption of silicon nanocrystals.
Functionalized silicon nanocrystals have been characterized with different analytical techniques leading to a good knowledge of optical properties of semiconductor quantum dots.
|
19 |
Photophysical investigation of light-harvesting systems for solar-to-fuel conversionGullo, Maria Pia <1987> 29 April 2015 (has links)
In recent years, an increasing attention has been given to the optimization of the performances of new supramolecular systems, as antennas for light collection.
In such background, the aim of this thesis was the study of multichromophoric architectures capable of performing such basic action.
A synthetic antenna should consist of a structure with large UV-Vis absorption cross-section, panchromatic absorption, fixed orientation of the components and suitable energy gradients between them, in order to funnel absorbed energy towards a specific site, through fast energy-transfer processes.
Among the systems investigated in this thesis, three suitable classes of compounds can be identified: 1) transition metal-based multichromophoric arrays, as models for antenna construction, 2) free-base trans-A2B-phenylcorroles, as self-assembling systems to make effective mimics of the photosynthetic system, and 3) a natural harvester, the Photosystem I, immobilized on the photoanode of a solar-to-fuel conversion device.
The discussion starts with the description of the photophysical properties of dinuclear quinonoid organometallic systems, able to fulfil some of the above mentioned absorption requirements, displaying in some cases panchromatic absorption.
The investigation is extended to the efficient energy transfer processes occurring in supramolecular architectures, suitably organized around rigid organic scaffolds, such as spiro-bifluorene and triptycene.
Furthermore, the photophysical characterization of three trans-A2B-phenylcorroles with different substituents on the meso-phenyl ring is introduced, revealing the tendency of such macrocycles to self-organize into dimers, by mimicking natural self-aggregates antenna systems.
In the end, the photophysical analysis moved towards the natural super-complex PSI-LHCI, immobilized on the hematite surface of the photoanode of a bio-hybrid dye-sensitized solar cell.
The importance of the entire work is related to the need for a deep understanding of the energy transfer mechanisms occurring in supramolecules, to gain insights and improve the strategies for governing the directionality of the energy flow in the construction of well-performing antenna systems.
|
20 |
Homo- and Heterometal Carbonyl NanoclustersCiabatti, Iacopo <1987> 29 April 2015 (has links)
In this thesis, the syntheses and the characterizations of several new bimetallic carbonyl clusters have been outlined. X-ray crystallography is a key technique in order to elucidate their structures which can be related to their chemical and physical properties. In particular, electrochemical studies are very useful in order to understand how the physical properties of metal aggregates change with increasing size and when the molecular behavior fades into bulk behavior. Moreover, the incipient metallization of the cluster has be assessed (not measured) via UV-vis analyses even if this technique revealed to be not very useful in order to distinguish the different species present in solution. Overall, this work demonstrates that molecular nanoclusters are ideal models in order to better understand the structures and properties of ultrasmall metal nanoparticles.
|
Page generated in 0.0442 seconds