• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 209
  • 99
  • 26
  • 5
  • Tagged with
  • 339
  • 251
  • 63
  • 62
  • 62
  • 62
  • 62
  • 62
  • 62
  • 45
  • 38
  • 31
  • 31
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Multicomponent nanodevices based on molecular and nanocrystal moieties

Avellini, Tommaso <1985> 17 April 2013 (has links)
Nanoscience is an emerging and fast-growing field of science with the aim of manipulating nanometric objects with dimension below 100 nm. Top down approach is currently used to build these type of architectures (e.g microchips). The miniaturization process cannot proceed indefinitely due to physical and technical limitations. Those limits are focusing the interest on the bottom-up approach and construction of nano-objects starting from “nano-bricks” like atoms, molecules or nanocrystals. Unlike atoms, molecules can be “fully programmable” and represent the best choice to build up nanostructures. In the past twenty years many examples of functional nano-devices able to perform simple actions have been reported. Nanocrystals which are often considered simply nanostructured materials, can be active part in the development of those nano-devices, in combination with functional molecules. The object of this dissertation is the photophysical and photochemical investigation of nano-objects bearing molecules and semiconductor nanocrystals (QDs) as components. The first part focuses on the characterization of a bistable rotaxane. This study, in collaboration with the group of Prof. J.F. Stoddart (Northwestern University, Evanston, Illinois, USA) who made the synthesis of the compounds, shows the ability of this artificial machine to operate as bistable molecular-level memory under kinetic control. The second part concerns the study of the surface properties of luminescent semiconductor nanocrystals (QDs) and in particular the effect of acid and base on the spectroscopical properties of those nanoparticles. In this section is also reported the work carried out in the laboratory of Prof H. Mattoussi (Florida State University, Tallahassee, Florida, USA), where I developed a novel method for the surface decoration of QDs with lipoic acid-based ligands involving the photoreduction of the di-thiolane moiety.
52

Polysulfurated aromatic compounds: preparation and photophysical properties

Fermi, Andrea <1985> 17 April 2013 (has links)
The aim of this thesis was the synthesis and photophysical characterization of some new polysulfurated aromatic compounds: this class of molecules can offer intriguing properties, potentially useful for the construction of new materials for optoelectronic devices. Two main families of compounds have been synthesized: the first is represented by a series of small molecular asterisks, with peripheral aromatic units, showing luminescence in solid phase or in highly rigid conditions. All compounds with peripheral substituents display an AIE behavior (Aggregation Induced Emission) with radiative deactivation of the triplet states. Taking inspiration from these smaller asterisks, a larger molecule with the same geometry has been designed, decorated with terpyridyl moieties as the outermost units: this compound shows great affinity for the coordination of several transition metal ions, changing luminescence properties after the interaction with zinc ions. With the same intentions, a tetrasulfurated pyrene-core molecule with terpyridyl external units has been synthesized and isolated: this ligand exhibits good coordination capabilities towards transition metal ions, giving rise to luminescent nanoaggregates upon addition of zinc(II), characterized by DLS and AFM microscopy. In addition a NIR emission is recorded after coordination of neodymium(III), showing evidence of an intramolecular energy transfer process.
53

Design, synthesis and Chemical-physical characterization of photocatalytic inorganic nanocrystals for technological applications

Marchetti, Marco <1980> 22 April 2013 (has links)
This work was based on the synthesis and characterization of innovative crystals for biomedical and technological applications. Different types of syntheses were developed in order to obtain crystals with high photocatalytic properties. A hydrothermal synthesis was also processed to correlate the chemical-physical characteristics with synthesis parameters obtaining synthesis of nanoparticles of titanium dioxide with different morphology, size and crystalline phase depending on the variation of the synthesis parameters. Also a synthesis in water at 80 °C temperature and low pressure was developed from which anatase containing a small percentage of brookite nanoparticles were obtained, presenting a high photocatalytic activity. These particles have been used to obtain the microcrystals formed by an inorganic core of hydroxyapatite surface covered by TiO2 nanoparticles. Micrometer material with higher photocatalytic has been produced. The same nanoparticles have been functionalized with resorcinol oxidized in order to increase the photocatalytic efficiency. Photodegradation test results have confirmed this increase. Finally, synthetic nanoparticles with a waterless synthesis using formic acid and octanol, through esterification "in situ" were synthesized. Nanoparticles superficially covered by carboxylic residues able to bind a wide range of molecules to obtain further photocatalytic properties were obtained.
54

Photoactive Carbon Nanostructures: From Multicomponent Arrays To Nanomaterials

Malicka, Joanna <1985> 17 April 2013 (has links)
Carbon has a unique ability to shape networks of differently hybridized atoms that can generate various allotropes and may also exist as nanoscale materials. The emergence of carbon nanostructures initially occured through the serendipitous discovery of fullerenes and then through experimental advances which led to carbon nanotubes, nanohorns and graphene. The structural diversity of carbon nanoscopic allotropes and their unique and unprecedentend properties, give rise to countless applications and have been intensively exploited in nanotechnology, since they may address the need to create smarter optoelectronic devices, smaller in size and with better performance. The versatile properties of carbon nanomaterials are reflected in the multidisciplinary character of my doctoral research where, in particular, I take advantage of the opportunities offered by fullerenes and carbon nanotubes in constructing novel functional materials. In this work, carbon nanostructures are incorporated in novel photoactive functional systems constructed through different types of interactions – covalent bonds, ion-pairing or self-assembly. The variety of properties exhibited by carbon nanostructures is successfully explored by assigning them a different role in a specific array: fullerenes are employed as electron or energy acceptors, whereas carbon nanotubes behave like optically inert scaffolds for luminescent materials or nanoscale substrates in sonication-induced self-assembly. All the presented systems serve as a testbed for exploring the properties of carbon nanostructures in multicomponent arrays, which may be advantageous for the production of new photovoltaic or optoelectronic devices, as well as in the design and control of self-assembly processes.
55

Crystal Engineering of bright luminescent copper iodide clusters with phosphorus and nitrogen-based ligands

Mazzeo, Paolo Pio <1986> 11 April 2014 (has links)
Copper(I) halide clusters are recently considered as good candidate for optoelectronic devices such as OLEDs . Although the copper halide clusters, in particular copper iodide, are very well known since the beginning of the 20th century, only in the late ‘70s the interest on these compounds grew dramatically due their particular photophysical behaviour. These complexes are characterized by a dual triplet emission bands, named Cluster Centred (3CC) and Halogen-to-Ligand charge transfer (3XLCT), the intensities of which are strictly related with the temperature. The CC transition, due to the presence of a metallophylic interactions, is prevalent at ambient temperature while the XLCT transition, located preferentially on the ligand part, became more prominent at low temperature. Since these pioneering works, it was easy to understand the photophysical properties of this compounds became more interesting in solid-state respect to solution with an improvement in emission efficiency. In this work we aim to characterize in SS organocopper(I)iodide compounds to valuate the correlation between the molecular crystal structure and the photophysical properties. It is also considered to hike new strategies to synthesize CuI complexes from the wet reactions to the more green solvent free methods. The advantages in using these strategies are evident but, obtain a single crystal suitable for SCXRD analysis from these batches is quite impossible. The structure solution still remains the key point in this research so we tackle this problem solving the structure by X-ray powder diffraction data. When the sample was fully characterized we moved to design and development of the associated OLED-device. Since copper iodide complexes are often insoluble in organic solvents, the high vacuum deposition technique is preferred. A new non-conventional deposition process have also been proposed to avoid the low complex stability in this practice with an in-situ complex formation in a layer-by layer deposition route.
56

Design and Characterization of Luminescent Silica Nanoparticles

Petrizza, Luca <1983> 12 May 2015 (has links)
The aim of this thesis was to design, synthesize and characterize dye-doped silica nanoparticles (DDSNPs) to be used as chemosensors or labels in bioanalytical applications. DDSNPs represent one of the most versatile and useful components in nanomedicine displaying important features such as high colloid stability in water, low toxicity, one-pot inexpensive synthesis and tunable fluorescence emission. Starting from the one-pot and highly reproducible synthesis of “silica-core/PEG shell” DDSNPs based on the use of micelles of Pluronic F127, in which take place both hydrolysis and condensation of the silica precursor and of the dyes functionalized with a triethoxysilane group, we developed DDSNPs suitable for optical and optoacustic imaging, drug loading and chemical sensing obtaining very interesting results for the further development of nanomedicine.
57

Characterization of optical transduction-based molecular systems and nanoparticles for the development of chemical sensors / Caratterizzazione di sistemi molecolari e nanoparticelle a trasduzione ottica per lo sviluppo di sensori chimici

Sgarzi, Massimo <1984> 11 April 2014 (has links)
With the increasing importance that nanotechnologies have in everyday life, it is not difficult to realize that also a single molecule, if properly designed, can be a device able to perform useful functions: such a chemical species is called chemosensor, that is a molecule of abiotic origin that signals the presence of matter or energy. Signal transduction is the mechanism by which an interaction of a sensor with an analyte yields a measurable form of energy. When dealing with the design of a chemosensor, we need to take into account a “communication requirement” between its three component: the receptor unit, responsible for the selective analyte binding, the spacer, which controls the geometry of the system and modulates the electronic interaction between the receptor and the signalling unit, whose physico-chemical properties change upon complexation. A luminescent chemosensor communicates a variation of the physico-chemical properties of the receptor unit with a luminescence output signal. This thesis work consists in the characterization of new molecular and nanoparticle-based system which can be used as sensitive materials for the construction of new optical transduction devices able to provide information about the concentration of analytes in solution. In particular two direction were taken. The first is to continue in the development of new chemosensors, that is the first step for the construction of reliable and efficient devices, and in particular the work will be focused on chemosensors for metal ions for biomedical and environmental applications. The second is to study more efficient and complex organized systems, such as derivatized silica nanoparticles. These system can potentially have higher sensitivity than molecular systems, and present many advantages, like the possibility to be ratiometric, higher Stokes shifts and lower signal-to-noise ratio.
58

Biomimetic Materials for Biomedical Applications

Capuccini, Chiara <1979> 27 April 2009 (has links)
Objects with complex shape and functions have always attracted attention and interest. The morphological diversity and complexity of naturally occurring forms and patterns have been a motivation for humans to copy and adopt ideas from Nature to achieve functional, aesthetic and social value. Biomimetics is addressed to the design and development of new synthetic materials using strategies adopted by living organisms to produce biological materials. In particular, biomineralized tissues are often sophisticate composite materials, in which the components and the interfaces between them have been defined and optimized, and that present unusual and optimal chemical-physical, morphological and mechanical properties. Moreover, biominerals are generally produced by easily traceable raw materials, in aqueous media and at room pressure and temperature, that is through cheap process and materials. Thus, it is not surprising that the idea to mimic those strategies proper of Nature has been employed in several areas of applied sciences, such as for the preparation of liquid crystals, ceramic thin films computer switches and many other advanced materials. On this basis, this PhD thesis is focused on the investigation of the interaction of biologically active ions and molecules with calcium phosphates with the aim to develop new materials for the substitution and repair of skeletal tissue, according to the following lines: I. Modified calcium phosphates. A relevant part of this PhD thesis has been addressed to study the interaction of Strontium with calcium phosphates. It was demonstrated that strontium ion can substitute for calcium into hydroxyapatite, causing appreciable structural and morphological modifications. The detailed structural analysis carried out on the nanocrystals at different strontium content provided new insight into its interaction with the structure of hydroxyapatite. At variance with the behaviour of Sr towards HA, it was found that this ion inhibits the synthesis of octacalcium phosphate. However, it can substitute for calcium in this structure up to 15 atom %, in agreement with the increase of the cell parameters observed on increasing ion concentration. A similar behaviour was found for Magnesium ion, whereas Manganese inhibits the synthesis of octacalcium phosphate and it promotes the precipitation of dicalcium phosphate dehydrate. It was also found that Strontium affects the kinetics of the reaction of hydrolysis of α-TCP. It inhibits the conversion from α-TCP to hydroxyapatite. However, the resulting apatitic phase contains significant amounts of Sr2+ suggesting that the addition of Sr2+ to the composition of α-TCP bone cements could be successfully exploited for its local delivery in bone defects. The hydrolysis of α-TCP has been investigated also in the presence of increasing amounts of gelatin: the results indicated that this biopolymer accelerates the hydrolysis reaction and promotes the conversion of α-TCP into OCP, suggesting that its addition in the composition of calcium phosphate cements can be employed to modulate the OCP/HA ratio, and as a consequence the solubility, of the set cement. II. Deposition of modified calcium phosphates on metallic substrates. Coating with a thin film of calcium phosphates is frequently applied on the surface of metallic implants in order to combine the high mechanical strength of the metal with the excellent bioactivity of the calcium phosphates surface layers. During this PhD thesis, thank to the collaboration with prof. I.N. Mihailescu, head of the Laser-Surface-Plasma Interactions Laboratory (National Institute for Lasers, Plasma and Radiation Physics – Laser Department, Bucharest) Pulsed Laser Deposition has been successfully applied to deposit thin films of Sr substituted HA on Titanium substrates. The synthesized coatings displayed a uniform Sr distribution, a granular surface and a good degree of crystallinity which slightly decreased on increasing Sr content. The results of in vitro tests carried out on osteoblast-like and osteoclast cells suggested that the presence of Sr in HA thin films can enhance the positive effect of HA coatings on osteointegration and bone regeneration, and prevent undesirable bone resorption. The possibility to introduce an active molecule in the implant site was explored using Matrix Assisted Pulsed Laser Evaporation to deposit hydroxyapatite nanocrystals at different content of alendronate, a bisphosphonate widely employed in the treatments of pathological diseases associated to bone loss. The coatings displayed a good degree of crystallinity, and the results of in vitro tests indicated that alendronate promotes proliferation and differentiation of osteoblasts even when incorporated into hydroxyapatite. III. Synthesis of drug carriers with a delayed release modulated by a calcium phosphate coating. A core-shell system for modulated drug delivery and release has been developed through optimization of the experimental conditions to cover gelatin microspheres with a uniform layer of calcium phosphate. The kinetics of the release from uncoated and coated microspheres was investigated using aspirin as a model drug. It was shown that the presence of the calcium phosphate shell delays the release of aspirin and allows to modulate its action.
59

Biodegradable systems for the development of functional materials

Gioffré, Michela <1984> 22 April 2013 (has links)
This PhD work was aimed to design, develop, and characterize gelatin-based scaffolds, for the repair of defects in the muscle-skeletal system. Gelatin is a biopolymer widely used for pharmaceutical and medical applications, thanks to its biodegradability and biocompatibility. It is obtained from collagen via thermal denaturation or chemical-physical degradation. Despite its high potential as biomaterial, gelatin exhibits poor mechanical properties and a low resistance in aqueous environment. Crosslinking treatment and enrichment with reinforcement materials are thus required for biomedical applications. In this work, gelatin based scaffolds were prepared following three different strategies: films were prepared through the solvent casting method, electrospinning technique was applied for the preparation of porous mats, and 3D porous scaffolds were prepared through freeze-drying. The results obtained on films put into evidence the influence of pH, crosslinking and reinforcement with montmorillonite (MMT), on the structure, stability and mechanical properties of gelatin and MMT/gelatin composites. The information acquired on the effect of crosslinking in different conditions was utilized to optimize the preparation procedure of electrospun and freeze-dried scaffolds. A successful method was developed to prepare gelatin nanofibrous scaffolds electrospun from acetic acid/water solution and stabilized with a non-toxic crosslinking agent, genipin, able to preserve their original morphology after exposure to water. Moreover, the co-electrospinning technique was used to prepare nanofibrous scaffolds at variable content of gelatin and polylactic acid. Preliminary in vitro tests indicated that the scaffolds are suitable for cartilage tissue engineering, and that their potential applications can be extended to cartilage-bone interface tissue engineering. Finally, 3D porous gelatin scaffolds, enriched with calcium phosphate, were prepared with the freeze-drying method. The results indicated that the crystallinity of the inorganic phase influences porosity, interconnectivity and mechanical properties. Preliminary in vitro tests show good osteoblast response in terms of proliferation and adhesion on all the scaffolds.
60

Preparation of new crystal forms via photochemical, mechanochemical and sol-gel methods

D’Agostino, Simone <1981> 12 April 2012 (has links)
This work of thesis involves various aspects of crystal engineering. Chapter 1 focuses on crystals containing crown ether complexes. Aspects such as the possibility of preparing these materials by non-solution methods, i.e. by direct reaction of the solid components, thermal behavior and also isomorphism and interconversion between hydrates are taken into account. In chapter 2 a study is presented aimed to understanding the relationship between hydrogen bonding capability and shape of the building blocks chosen to construct crystals. The focus is on the control exerted by shape on the organization of sandwich cations such as cobalticinium, decamethylcobalticinium and bisbenzenchromium(I) and on the aggregation of monoanions all containing carboxylic and carboxylate groups, into 0-D, 1-D, 2-D and 3-D networks. Reactions conducted in multi-component molecular assemblies or co-crystals have been recognized as a way to control reactivity in the solid state. The [2+2] photodimerization of olefins is a successful demonstration of how templated solid state synthesis can efficiently synthesize unique materials with remarkable stereoselectivity and under environment-friendly conditions. A demonstration of this synthetic strategy is given in chapter 3. The combination of various types of intermolecular linkages, leading to formation of high order aggregation and crystalline materials or to a random aggregation resulting in an amorphous precipitate, may not go to completeness. In such rare cases an aggregation process intermediate between crystalline and amorphous materials is observed, resulting in the formation of a gel, i.e. a viscoelastic solid-like or liquid-like material. In chapter 4 design of new Low Molecular Weight Gelators is presented. Aspects such as the relationships between molecular structure, crystal packing and gelation properties and the application of this kind of gels as a medium for crystal growth of organic molecules, such as APIs, are also discussed.

Page generated in 0.2397 seconds