• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterizing threats to coastal forests by a native defoliator and non-native woodborer

McAndrew, Kristy Marie 13 August 2024 (has links) (PDF)
Coastal forests are facing threats due to rising sea levels, increased storm severity, and land use change. These factors stress trees within coastal ecosystems, potentially predisposing them to attack by insects. In North America, two insect species of concern that pose threats to for coastal forest health are the native baldcypress leafroller (BCLR), Archips goyerana Kruse (Lepidoptera: Tortricidae), and non-native Japanese cedar longhorned beetle (JCLB), Callidiellum rufipenne Motschulsky (Coleoptera: Cerambycidae). Baldcypress leafroller has been reported from Mississippi and Louisiana, with defoliation only reported from the latter where increased flooding has stressed host trees. Through widespread trapping efforts, I found that BCLR occurs north into Arkansas and northeast into Delaware. I conducted environmental niche modeling that indicated that climatically suitable habitat in the United States is primarily in the southeastern United States, but that climatic suitability of the southeastern United States will increase and expands northwards. For JCLB, I found that interceptions of this insect of ports of entry in North America have remained low since the implementation of ISPM-15, and that most interceptions occur on wood packaging materials from the insect’s native range. Environmental niche modeling for JCLB indicated that climatically suitable areas were more prevalent in in the northern hemisphere under current and future climatic scenarios, but that poleward shifts in suitability are likely with ongoing climate change.
2

Comparing the effects of the exotic cactus-feeding moth, Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) and a native cactus-feeding moth, Melitara prodenialis (Walker) (Lepidoptera: Pyralidae) on two species of Florida Opuntia

Baker, Amanda J 01 June 2006 (has links)
Exotic species are a great concern because of the possibility of negative effects once they become established. The exotic cactus moth, Cactoblastis cactorum has a reputation for being detrimental to Opuntia populations throughout Florida and the southeastern United States. Multiple projects are currently underway to attempt to contain and eradicate this species before it can migrate to the Opuntia-rich desert southwest and the agricultural Opuntia fields in the Mexican highlands. These projects have been undertaken without previous studies to determine what negative effects, if any, the moth is having on the common native Opuntia species. This is understandable; since it was earlier suggested that C. cactorum was doing great harm to rare and endangered species in the Florida Keys (Stiling et al. 2004). This study looks at the effects of the native moth borer, Melitara prodenialis and the exotic invader, Cactoblastis cactorum on two common Opuntia spp. within central Flo rida. Throughout the duration of this study, the coastal plants were subjected to damage solely by C. cactorum and the inland plants by M. prodenialis. The amount of moth damage was compared between three inland and three coastal sites, as well as between plants subjected to prescribed fire and those that were not within these sites. Plant mortality was determined for both the sites and burn treatments. The number of eggsticks was also compared between inland and coastal sites and burned and unburned treatments. The results of this study show that although there is a significant difference in plant mortality between inland and coastal sites (higher mortality was shown at inland locations), there is no difference in moth damage at these sites. This suggests that the exotic moth is doing similar or less damage to the cactus than is the native moth. The number of eggsticks was also greater at coastal sites. This indicates that although the exotic moth is more prolific than the native, it is still unable to cause higher cactus mortality rates. None of the data was significant between burned and unburned treatments, indicating that prescribed fire does not have any effect, negative or positive on the Opuntia.
3

Phylogeography and conservation genetics of endangered saproxylic beetles in Europe

DRAG, Lukáš January 2016 (has links)
This thesis introduces the use of molecular methods for the conservation of several species of endangered saproxylic beetles in Europe. It focuses on the questions related to the DNA preservation and microsatellites development, as well as the evolutionary history and conservation of threatened species. Using the combination of mitochondrial and nuclear markers, the genetic diversity and reintroduction history of Cerambyx cerdo was assessed and the phylogeography of Rosalia alpina from the whole range of its distribution was studied. This information is valuable for designing more efficient conservation strategies.
4

Molecular Ecology of the Primitively Eusocial Wasp Ropalidia Marginata : Relatedness, Queen Succession and Population Genetics

Chakraborty, Saikat January 2015 (has links) (PDF)
Altruism is defined as a trait in an individual that increases some other individual’s fitness at the expense of her own. Therefore, existence of such traits in a population is an evolutionary paradox, as natural selection should eliminate such a trait. Extreme altruism in the form of eusociality where individuals relinquish their own reproduction to help raise other’s offspring has been an enigma in evolutionary biology since Darwin. Primitively eusocial organisms provide one with a unique system to study the evolution and maintenance of altruism as in these kind of species most of the individuals are capable of developing their reproductive organs, although at a certain point in time, only one or a few individuals actually reproduce. Ropalidia marginata is a primitively eusocial wasp belonging to the insect order Hymenoptera, Family Vespidae. R. marginata colonies are monogynous, although serial polygyny is observed in a colony’s lifetime. Colony initiation happens either by single founding or multiple founding. Newly founded colonies may accept individuals from other colonies, but mature colonies seldom do. Production of males is irregular, and once eclosed, they generally leave their natal nest within a week. The haplodiploidy of Hymenopteran species, i.e. the males being haploid and the females diploid, make them uniquely genetically predisposed for eusociality to evolve as was shown by William Donald Hamilton in his kin selection theory. Primitvely eusocial Hymenopteran species, being susceptible to experimental manipulation, allows one to test the predictions of this theory. In this thesis I have addressed three aspects of the biology of R. marginata using microsatellite markers, which are the following: 1) Distribution of nestmate genetic relatedness in early founding (pre‐emergence) and mature ( post‐emergence colonies) and their comparison (Chapter 3) 2) Role of relatedness and fertility in predicting the queen’s successor (Chapter 4) 3) Genetic structure of populations (Chapter 5) CHAPTER 1. INTRODUCTION: This chapter gives a brief outline of the field of molecular ecology putting its techniques to the context of insect sociobiology. CHAPTER 2. METHODS: This chapter gives a general outline of the molecular genetic methods involved. In addition, the issue of the mutation process in R. marginata microsatellites has also been addressed. There are two main models of mutation for microsatellite evolution i.e. infinite alleles model (IAM) and the step‐wise mutation model (SMM). To understand the actual process of mutation in R. marginata, sets of alleles with continuous sizes were sequenced and aligned. This was repeated for several of the loci. Seven out of the nine loci genotyped revealed clear step‐like mutation pattern and was binned accordingly. Two loci were dropped as the actual nature of step‐sizes in these two loci was unclear. Therefore, the final dataset consisted of genotype for 7 loci. This chapter also discusses the initial steps in data formatting and analysis. CHAPTER 3. GENETIC RELATEDNESS IN DIFFERENT STAGES OF COLONY DEVELOPMENT: In this chapter I have estimated nestmate genetic relatedness using seven polymorphic microsatellite loci in two different stages of colony development of the primitively eusocial wasp Ropalidiamarginata and compared them. In both kinds of nests the average colony relatedness was observed to be less than 0.75, i.e., what is expected for full sib females in Hymenoptera. Moreover, it was observed that the nestmates at the initial colony founding stage are on average less related to each other than in mature colonies. From this, one may postulate that the indirect component of inclusive fitness plays a relatively minor role than its direct component as individuals chose to leave a higher relatedness background in favour of a lower relatedness background. As newly founded colonies are relatively smaller in size than mature colonies, the probability of an individual wasp becoming the queen in this kind of colony is higher than in mature colonies. CHAPTER 4. TESTING THE ROLE OF RELATEDNESS AND FERTILITY IN PREDICTING THE QUEEN’S SUCCESSORS: R. marginata colonies are headed by docile queens. When this queen dies or is removed, one of the workers becomes extremely aggressive. She is known as the potential queen because within a few days she becomes the new queen of the colony and her aggression comes down. Predicting the successor in the presence of the queen has eluded most of the approaches attempted so far. The probability of an individual becoming the queen has been found to be uncorrelated with her body size, aggression, ovarian status or mating status. The only trend that has been observed till date, is a positive correlation with age, but the pattern is not perfect. However, the workers themselves seem to be perfectly aware of who their immediate successor going to be. In this chapter, I have tested several models of queen succession constructed in an inclusive fitness framework. These models have been tested both using relatedness alone as well as using fertility along with relatedness. Predictions of none of the models actually matched the observed sequence of successors. The wasps do not seem to be choosing their successor to maximize their inclusive fitness. CHAPTER 5. GENETIC STRUCTURE OF NATURAL POPULATIONS: I have also looked at the genetic structure of R. marginata populations in a large part of its natural distribution. I have used both F and R statistics to estimate the level of structuring and compared them. Both Fat as well Rst were found to be significantly larger than 0. Also Fis and Ris both were small and not significant suggesting lack of inbreeding. Rst was observed to be higher than Fst. Permutation test revealed a higher contribution of mutation in this structuring than migration, suggesting Rst to be a better measure of genetic structuring in this case. Similar pattern was observed with Anlysis of MOlecular VAriance. Pairwise Fst/(1‐Fst) values were found to be uncorrelated with distance, whereas barely significant trend was observed with Rst/(1‐Rst). The scatter across the trend line in both the cases suggested lack of migration drift equilibrium, with drift being more relative to migration. Higher level of structuring was observed at the level of the colony. However, colonies were rather outbred as was suggested by high and negative values of Fia and Ria values. This is not at all surprising as nestmates are related to each other. The pattern of isolation by distance at the colony level was similar to that observed in case of the populations. However, there was even higher degree of scattering of the individual points in this case. CHAPTER 6. CONCLUSIONS: Hamilton’s inclusive fitness theory has received a wide attention from and acceptance by sociobiologists, and relatedness have been measured in a wide variety of social insects. In this thesis relatedness in the context of colony founding was measured and compared with mature colonies. Also, several models constructed in an inclusive theory framework were experimentally tested. In both, support for indirect fitness was found wanting. The population genetic structure of R. marginata revealed that the sub populations are small in size and migration among them low. It also suggested significant contribution of colony level structuring on the population genetic structuring. Using more modern molecular genetic and statistical techniques, these and similar other questions can be addressed with higher precision and rigour, and such studies are expected to greatly advance our understanding of the basic premise of this thesis, i.e., how can eusociality evolve and be maintained? We hope that the current work will encourage others to ask such questions in other species.

Page generated in 0.0465 seconds