• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • 1
  • Tagged with
  • 17
  • 17
  • 10
  • 9
  • 9
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Résonances des cavités ionosphériques des planètes et de leurs satellites: progrès et perspectives instrumentales

Dos Santos Simoes, Fernando 07 December 2007 (has links) (PDF)
L'étude des ondes d'extrêmement basses fréquences dans les cavités ionosphériques des planètes et satellites dotés d'atmosphère suit une approche similaire à celle suivie pour la Terre. Elle contribue à la caractérisation du circuit électrique atmosphérique, des sources d'énergie associées et des limites des cavités. Un modèle numérique à éléments finis a été développé et appliqué à ces corps planétaires en vue d'étudier en particulier les résonances de Schumann. La pertinence d'un modèle de la cavité de Titan a été testée par rapport aux mesures de l'instrument PWA de la sonde Huygens. La découverte d'une couche ionisée à basse altitude et l'évaluation des propriétés diélectriques de la surface après l'atterrissage sont exposées. L'expérience acquise est appliquée à la conception de nouveaux instruments, ARES et SP2, pour étudier l'atmosphère et le sol de la planète Mars dans le cadre du projet ExoMars et pour d'autres corps lors de futurs projets spatiaux.
12

Optimisation de l’analyse de données de la mission spatiale MICROSCOPE pour le test du principe d’équivalence et d’autres applications / Optimization of the data analysis of the MICROSCOPE space mission for the test of the Equivalence Principle and other applications

Baghi, Quentin 12 October 2016 (has links)
Le Principe d'Equivalence (PE) est un pilier fondamental de la Relativité Générale. Il est aujourd'hui remis en question par les tentatives d'élaborer une théorie plus exhaustive en physique fondamentale, comme la théorie des cordes. La mission spatiale MICROSCOPE vise à tester ce principe à travers l'universalité de la chute libre, avec un objectif de précision de 10-15, c'est-à-dire un gain de deux ordres de grandeurs par rapport aux expériences actuelles. Le satellite embarque deux accéléromètres électrostatiques, chacun intégrant deux masses-test. Les masses de l'accéléromètre servant au test du PE sont de compositions différentes, alors que celles de l'accéléromètre de référence sont constituées d'un même matériau. L'objectif est de mesurer la chute libre des masses-test dans le champ gravitationnel de la Terre, en mesurant leur accélération différentielle avec une précision attendue de 10-12 ms-2Hz-1/2 dans la bande d'intérêt. Une violation du PE se traduirait par une différence périodique caractéristique entre les deux accélérations. Cependant, diverses perturbations sont également mesurées en raison de la grande sensibilité de l'instrument. Certaines d'entre elles, comme les gradients de gravité et d'inertie, sont bien définies. En revanche d'autres ne sont pas modélisées ou ne le sont qu'imparfaitement, comme le bruit stochastique et les pics d'accélérations dus à l'environnement du satellite, qui peuvent entraîner des saturations de la mesure ou des données lacunaires. Ce contexte expérimental requiert le développement d'outils adaptés pour l'analyse de données, qui s'inscrivent dans le cadre général de l'analyse des séries temporelles par régression linéaire.On étudie en premier lieu la détection et l’estimation de perturbations harmoniques dans le cadre de l'analyse moindres carrés. On montre qu’avec cette technique la projection des perturbations harmoniques sur le signal de violation du PE peut être maintenue à un niveau acceptable. On analyse ensuite l'impact des pertes de données sur la performance du test du PE. On montre qu'avec l'hypothèse pire cas sur la fréquence des interruptions de données (environ 300 interruptions de 0.5 seconde par orbite, chiffre évalué avant le vol), l'incertitude des moindres carrés ordinaires est multipliée par un facteur 35 à 60. Pour compenser cet effet, une méthode de régression linéaire basée sur une estimation autorégressive du bruit est développée, qui permet de décorréler les observations disponibles, sans calcul ni inversion directs de la matrice de covariance. La variance de l'estimateur ainsi construit est proche de la valeur optimale, ce qui permet de réaliser un test du PE au niveau attendu, même en présence de pertes de données fréquentes. On met également en place une méthode pour évaluer plus précisément la DSP du bruit à partir des données disponibles, sans utilisation de modèle a priori. L'approche est fondée sur une modification de l'algorithme espérance-maximisation (EM) avec une hypothèse de régularité de la DSP, en utilisant une imputation statistique des données manquantes. On obtient une estimée de la DSP avec une erreur inférieure à 10-12 ms-2Hz-1/2. En dernier lieu, on étend les applications de l'analyse de données en étudiant la faisabilité de la mesure du gradient de gravité terrestre avec MICROSCOPE. On évalue la capacité de cette observable à déchiffrer la géométrie des grandes échelles du géopotentiel. Par simulation des signaux obtenus à partir de différents modèles du manteau terrestre profond, on montre que leurs particularités peuvent être distinguées. / The Equivalence Principle (EP) is a cornerstone of General Relativity, and is called into question by the attempts to build more comprehensive theories in fundamental physics such as string theories. The MICROSCOPE space mission aims at testing this principle through the universality of free fall, with a target precision of 10-15, two orders of magnitude better than current on-ground experiments. The satellite carries on-board two electrostatic accelerometers, each one including two test-masses. The masses of the test accelerometer are made with different materials, whereas the masses of the reference accelerometer have the same composition. The objective is to monitor the free fall of the test-masses in the gravitational field of the earth by measuring their differential accelerations with an expected precision of 10-12 ms-2Hz-1/2 in the bandwidth of interest. An EP violation would result in a characteristic periodic difference between the two accelerations. However, various perturbations are also measured because of the high sensitivity of the instrument. Some of them are well defined, e.g. gravitational and inertial gradient disturbances, but others are unmodeled, such as random noise and acceleration peaks due to the satellite environment, which can lead to saturations in the measurement or data gaps. This experimental context requires us to develop suited tools for the data analysis, which are applicable in the general framework of linear regression analysis of time series.We first study the statistical detection and estimation of unknown harmonic disturbances in a least squares framework, in the presence of a colored noise of unknown PSD. We show that with this technique the projection of the harmonic disturbances onto the WEP violation signal can be rejected. Secondly we analyze the impact of the data unavailability on the performance of the EP test. We show that with the worst case before-flight hypothesis (almost 300 gaps of 0.5 second per orbit), the uncertainty of the ordinary least squares is increased by a factor 35 to 60. To counterbalance this effect, a linear regression method based on an autoregressive estimation of the noise is developed, which allows a proper decorrelation of the available observations, without direct computation and inversion of the covariance matrix. The variance of the constructed estimator is close to the optimal value, allowing us to perform the EP test at the expected level even in case of very frequent data interruptions. In addition, we implement a method to more accurately characterize the noise PSD when data are missing, with no prior model on the noise. The approach is based on modified expectation-maximization (EM) algorithm with a smooth assumption on the PSD, and use a statistical imputation of the missing data. We obtain a PSD estimate with an error less than 10-12 ms-2Hz-1/2. Finally, we widen the applications of the data analysis by studying the feasibility of the measurement of the earth's gravitational gradient with MICROSCOPE data. We assess the ability of this set-up to decipher the large scale geometry of the geopotential. By simulating the signals obtained from different models of the earth's deep mantle, and comparing them to the expected noise level, we show that their features can be distinguished.
13

Développement d'un simulateur pour le X-ray integral field unit : du signal astrophysique à la performance instrumentale / Development of an End-to-End simulator for the X-ray Integral Field Unit : from the astrophysical signal to the instrument performance

Peille, Philippe 28 September 2016 (has links)
Cette thèse est consacrée au développement d'un modèle End-to-End pour le spectrocalorimètre X-IFU qui observera à partir de 2028 l'Univers en rayons X avec une précision jamais atteinte auparavant. Ce travail s'est essentiellement organisé en deux parties. J'ai dans un premier temps étudié la dynamique des parties les plus internes des binaires X de faible masse à l'aide de deux sondes particulières que sont les sursauts X et les oscillations quasi-périodiques au kHz (kHz QPOs). En me basant sur les données d'archive du satellite Rossi X-ray Timing Explorer et sur des méthodes d'analyse spécifiquement développées dans ce but, j'ai notamment pu mettre en évidence pour la première fois une réaction du premier sur le second, confirmant le lien très étroit entre ces oscillations et les parties les plus internes du système. Le temps de rétablissement du système suite aux sursauts entre également en conflit dans la plupart des cas avec l'augmentation supposée du taux d'accrétion suite à ces explosions. Au travers d'une analyse spectro-temporelle complète des deux kHz QPOs de 4U 1728-34, j'ai également pu confirmer l'incompatibilité des spectres de retard des deux QPOs qui suggère une origine différente de ces deux oscillations. L'étude de leurs spectres de covariance, obtenus pour la première fois dans cette thèse, a quant à elle mis en évidence le rôle central de la couche de Comptonisation et potentiellement celui d'une zone particulièrement compacte de la couche limite pour l'émission des QPOs. Dans le second volet de ma thèse, j'ai développé un simulateur End-to-End pour l'instrument X-IFU permettant de représenter l'ensemble du processus menant à une observation scientifique en rayons X, de l'émission des photons par une source jusqu'à leur mesure finale à bord du satellite. J'ai notamment mis en place des outils permettant la comparaison précise de plusieurs matrices de détecteurs en prenant en compte les effets de la reconstruction du signal brut issu des électroniques de lecture. Cette étude a mis en évidence l'intérêt de configurations hybrides, contenant une sous-matrice de petits pixels capables d'améliorer par un ordre de grandeur la capacité de comptage de l'instrument. Une solution alternative consisterait à défocaliser le miroir lors de l'observation de sources ponctuelles brillantes. Situées au coeur de la performance du X-IFU, j'ai également comparé de manière exhaustive différentes méthodes de reconstruction des signaux bruts issus des détecteurs X-IFU. Ceci a permis de montrer qu'à faible coût en termes de puissance de calcul embarquée, une amélioration significative de la résolution en énergie finale de l'instrument pouvait être obtenue à l'aide d'algorithmes plus sophistiqués. En tenant compte des contraintes de calibration, le candidat le plus prometteur apparaît aujourd'hui être l'analyse dans l'espace de résistance. En me servant de la caractérisation des performances des différents types de pixels, j'ai également mis en place une méthode de simulation rapide et modulable de l'ensemble de l'instrument permettant d'obtenir des observations synthétiques à long temps d'exposition de sources X très complexes, représentatives des futures capacités du X-IFU. Cet outil m'a notamment permis d'étudier la sensibilité de cet instrument aux effets de temps mort et de confusion, mais également d'estimer sa future capacité à distinguer différents régimes de turbulence dans les amas de galaxies et de mesurer leur profil d'abondance et de température. A plus long terme ce simulateur pourra servir à l'étude d'autres cas scientifiques, ainsi qu'à l'analyse d'effets à l'échelle de l'ensemble du plan de détection tels que la diaphonie entre pixels. / This thesis is dedicated to the development of an End-ta-End model for the X-IFU spectrocalorimeter scheduled for launch in 2028 on board the Athena mission and which will observe the X-ray universe with unprecedented precision. This work has been mainly organized in two parts. I studied first the dynamics of the innermost parts of low mass X-ray binaries using two specific probes of the accretion flow: type I X-ray bursts and kHz quasi-periodic oscillations (kHz QPOs). Starting from the archivai data of the Rossi X-ray Timing Explorer mission and using specific data analysis techniques, I notably highlighted for the first time a reaction of the latter to the former, confirming the tight link between this oscillation and the inner parts of the system. The measured recovery time was also found in conflict with recent claims of an enhancement of the accretion rate following these thermonuclear explosions. From the exhaustive spectral timing analysis of both kHz QPOs in 4U 1728-34, I further confirmed the inconsistancy of their lag energy spectra, pointing towards a different origin for these two oscillations. The study of their covariance spectra, obtained here for the first time, has revealed the key role of the Comptonization layer, and potentially of a more compact part of it, in the emission of the QPOs. In the second part of my thesis, I focused on the development of an End-to-:End simulator for the X-IFU capable of depicting the full process leading to an X-ray observation, from the photon emission by the astrophysical source to their on-board detection. I notably implemented tools allowing the precise comparison of different potential pixel array configurations taking into account the effects of the event reconstruction from the raw data coming from the readout electronics. This study highlighted the advantage of using hybrid arrays containing a small pixel sub-array capable of improving by an order of magnitude the count rate capability of the instrument. An alternative solution would consist in defocusing the mirror during the observation of bright point sources. Being a key component of the overall X-IFU performance, I also thoroughly compared different reconstruction methods of the pixel raw signal. This showed that with a minimal impact on the required on-board processing power, a significant improvement of the final energy resolution could be obtained from more sophisticated reconstruction methods. Taking into account the calibration constraints, the most promising candidate currently appears to be the so-called "resistance space analysis". Taking advantage of the obtained performance characterization of the different foreseen pixel types, I also developed a fast and modular simulation method of the complete instrument providing representative synthetic observations with long exposure times of complex astrophysical sources suffinguish different turbulence regimes in galaxy clusters and to measure abundance and temperature profiles. In the longer run, this simulator will be useful for the study of other scientific cases as well as the analysis of instrumental effects at the full detection plane level such as pixel crosstalk.
14

Observations cosmologiques avec un télescope grand champ spatial: Simulations pixels du spectromètre sans fente d'EUCLID

Zoubian, Julien, Kneib, Jean-Paul, Milliard, Bruno 21 May 2012 (has links) (PDF)
Les observations des supernovae, du fond diffus cosmologique, et plus récemment la mesure des oscillations acoustiques des baryons et des effets de lentilles gravitationnelles faibles, favorisent le modèle cosmologique Lambda CDM pour lequel l'expansion de l'Univers est actuellement en accélération. Ce modèle fait appel à deux composants insaisissables, la matière sombre et l'énergie sombre. Deux approches semblent particulièrement prometteuses pour sonder à la fois la géométrie de l'Univers et la croissance des structures de matière noire, l'analyse des distorsions faibles des galaxies lointaines par cisaillement gravitationnel et l'étude des oscillations acoustiques des baryons. Ces deux méthodes demandent de très grands relevés du ciel, de plusieurs milliers de degrés carrés, en imagerie et en spectroscopie. Dans le contexte du relevé spectroscopique de la mission spatiale EUCLID, dédiée à l'étude des composantes sombres de l'univers, j'ai réalisé des simulations pixels permettant l'analyse des performances instrumentales. La méthode proposée peut se résumer en trois étapes. La première étape est de simuler les observables, c'est à dire principalement les sources du ciel. Pour cela j'ai développé une nouvelle méthode, adapté à la spectroscopie, qui permet d'imiter un relevé existant, en s'assurant que la distribution des propriétés spectrales des galaxies soit représentative des observations actuelles, en particulier la distribution des raies d'émission. La seconde étape est de simuler l'instrument et de produire des images équivalentes aux images réelles attendues. En me basant sur le simulateur pixel du HST, j'ai développé un nouvel outil permettant de simuler les images en spectroscopie sans fente d'EUCLID. Le nouveau simulateur a la particularité de pouvoir simuler des PSF avec une distribution d'énergie variée et des détecteurs dont chaque pixel est différent. La dernière étape est l'estimation des performances de l'instrument. Encore en me basant sur les outils existant, j'ai mis en place un pipeline de traitement des images et de mesure de performances. Mes résultat principaux ont été : 1) de valider la méthode en simulant un relevé de galaxies existant, le relevé WISP, 2) de déterminer les tolérances sur la distribution d'énergie de la PSF du spectromètre sans fente d'EUCLID, 3) de déterminer les tolérances sur les propriétés de détecteurs proche infrarouge d'EUCLID.
15

Étude de fonctions électroniques en technologie ASIC pour instruments dédiés à l'étude des plasmas spatiaux

Rhouni, Amine 21 November 2012 (has links) (PDF)
La couronne solaire est la source d'un vent de plasma qui interagit avec les divers objets du système solaire : planètes, comètes et astéroïdes. Le développement des instruments destinés à être embarqués à bord de satellites et de sondes spatiales permet d'étudier, in situ, les relations soleil Terre et plus généralement le vent solaire et les environnements ionisés planétaires. L'étude de ces phénomènes nécessite la combinaison d'instruments permettant de caractériser à la fois les ondes et leurs particules. Nous nous sommes intéressés à l'intégration de l'électronique des instruments spatiaux, et notamment la chaine d'amplification analogique de magnétomètres à induction et la chaîne d'amplification / discrimination de détecteurs de particules, en technologie standard CMOS 0.35 m. Les circuits étudiés, associés respectivement au magnétomètre à induction et au détecteur de particules, permettent l'amplification faible bruit à basse fréquence et l'amplification ultrasensible de charge sur une large gamme. Ces circuits doivent en outre répondre aux exigences du spatial en terme de consommation, tenue en température et en radiation. Le mémoire de thèse s'articule autour de la présentation de l'environnement ionisé de la Terre, la présentation des instruments scientifiques (magnétomètre spatial et détecteur de particules), la description des architectures des circuits CMOS permettant d'atteindre des performances inédites. Un travail important sur les structures d'amplifications a été mené afin de réduire considérablement la consommation et augmenter la sensibilité de la chaine électronique de traitement du détecteur de particules. Ainsi, la faisabilité d'une électronique intégrée multivoie pour l'analyseur de particules à optique hémisphérique contenant jusqu'à 256 pixels a été prouvée. Réduire le niveau de bruit en basse fréquence (de quelques 100 mHz à quelque 10 kHz) des circuits à base de composants MOS a toujours été une tache fastidieuse, puisque ce type de composants n'est à la base, pas destiné à une telle gamme de fréquence. Il a été donc nécessaire de concevoir des structures d'amplification originales par la taille non habituelle, voir à la limite autorisée par les procédés de fabrication, de leur transistors d'entrée. Cette solution a permis de réduire considérablement le niveau de bruit vu à l'entrée de l'électronique d'amplification des fluxmètres. L'avantage d'utiliser une technologie CMOS est le faible bruit en courant, la faible consommation et résoudre le problème de l'encombrement. Les résultats obtenus lors des tests de validations et en radiations sont très satisfaisants. Ils permettent d'ouvrir une éventuelle voie pour l'électronique intégrée au sein de l'instrumentation spatiale. Les performances obtenues notamment lors d'un tir fusée a renforcé la fiabilité d'une telles conceptions pour le domaine spatial.
16

ETUDE ET MISE EN OEUVRE DE MAGNETORESISTANCES ANISOTROPES ET A EFFET TUNNEL POUR LA MESURE DES CHAMPS MAGNETIQUES FAIBLES DANS LES PLASMAS SPATIAUX

Mansour, Malik 27 March 2012 (has links) (PDF)
L'étude in situ des relations Soleil-Terre et plus généralement des environnements ionisés du système solaire, nécessite la mesure d'ondes qui se propagent dans un plasma magnétisé. A bord des observatoires spatiaux, la composante magnétique de ces ondes est obtenue à l'aide de magnétomètres à induction. La mesure des hautes fréquences (de quelques Hz à quelques 100 kHz) est réalisée par des magnétomètres Searchcoil tandis que celles des basses fréquences (de quelques 10 mHz à quelques Hz) et de la composante continue sont confiées aux magnétomètres Fluxgate. Cette thèse porte sur le développement d'un magnétomètre dont la bande de mesure s'étend du continu à plusieurs kiloHertz. On y présente un concept instrumental innovant reposant sur la mise en œuvre simultanée d'une mesure inductive et magnétorésistive du champ magnétique. Nous nous intéressons d'abord à la conception et à l'étude de capteurs à magnétorésistance anisotrope (AMR) et à magnétorésistance tunnel (TMR) dont les propriétés d'anisotropie sont contrôlées par couplage d'échange. Nous montrons ensuite comment ces magnétorésistances peuvent être intégrées à un magnétomètre Searchcoil dont le noyau ferromagnétique est mis à profit pour réaliser un concentrateur magnétique performant. Nous détaillons alors les différents aspects de la conception d'un magnétomètre hybride Searchcoil/Magnétorésistance répondant aux contraintes environnementales associées aux expériences spatiales ainsi que d'un outil original d'optimisation des performances, alliant un modèle par éléments finis à un algorithme de type génétique. Nous prouvons enfin la faisabilité du concept proposé en réalisant un premier prototype de magnétomètre hybride Searchcoil/Capteur PHE tri-axes et de son électronique de préamplification faible bruit. La sensibilité de ce prototype, testé en conditions réelles lors d'un tir de fusée scientifique, avoisine les 200 fT/sqrt (Hz) à 1 kHz et les 400 pT/sqrt (Hz) à 1 Hz.
17

Miroirs actifs de l'espace - Développement de systèmes d'optique active pour les futurs grands observatoires

Laslandes, Marie 06 November 2012 (has links) (PDF)
Le besoin tant en haute qualité d'imagerie qu'en structures légères est l'un des principaux moteurs pour la conception des télescopes spatiaux. Un contrôle e fficace du front d'onde va donc devenir indispensable dans les futurs grands observatoires spatiaux, assurant une bonne performance optique tout en relâchant les contraintes sur la stabilité globale du système. L'optique active consiste à contrôler la déformation des miroirs, cette technique peut être utilisée afin de compenser la déformation des grands miroirs primaires, afin de permettre l'utilisation d'instrument reconfigurable ou afin de fabriquer des miroirs asphériques avec le polissage sous contraintes. Dans ce manuscrit, la conception de miroirs actifs dédiés à l'instrumentation spatiale est présentée. Premièrement, un système compensant la déformation d'un grand miroir allégé dans l'espace est conçu et ses performances sont démontrées expérimentalement. Avec 24 actionneurs, le miroir MADRAS (Miroir Actif Déformable et Régulé pour Applications Spatiales) e ffectuera une correction e fficace du front d'onde dans un relais de pupille du télescope. Deuxièmement, un harnais de déformation pour le polissage sous contraintes des segments du télescope géant européen de 39 m (E-ELT) est présenté. La performance du procédé est prédite et optimisée avec des analyses éléments finis et la production en masse des segments est considérée. Troisièmement, deux concepts originaux de miroirs déformables avec un nombre minimal d'actionneurs ont été développés. VOALA (Variable O ff-Axis parabola) est un système à trois actionneurs et COMSA (Correcting Optimized Mirror with a Single Actuator) est un système à un actionneur. Les systèmes actifs présentés dans ce manuscrit off rent de nombreux avantages pour une utilisation dans les futurs grands observatoires spatiaux: nombre de degrés de liberté limités, compacité, légèreté, robustesse et fiabilité. Ils permettront d'importantes ruptures technologiques et l'apparition d'architectures de télescope innovantes.

Page generated in 0.2964 seconds